DOI QR코드

DOI QR Code

An Efficient Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted-1H-imidazoles

  • Published : 2005.12.20

Abstract

Keywords

References

  1. Gedye, R.; Smith, F.; Westway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. Tetrahedron Lett. 1986, 27, 279 https://doi.org/10.1016/S0040-4039(00)83996-9
  2. Varma, R. S.; Dahiya, R.; Kumar, S. Tetrahedron Lett. 1997, 38, 2039 https://doi.org/10.1016/S0040-4039(97)00261-X
  3. Caddick, S. Tetrahedron 1995, 51, 10403 https://doi.org/10.1016/0040-4020(95)00662-R
  4. Bose, A. K.; Banik, B. K.; Lavlinskaia, N.; Jayaraman, M.; Manhas, M. S. Chemtech 1997, 27, 18
  5. Clark, J. H. In Catalysis of Organic Reactions by Supported Inorganic Reagents; VCH Publisher, Inc: New York, 1984
  6. Varma, R. S. In Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley VCH: Weinheim, 2002; Chapter 6, pp 181-218
  7. Varma, R. S. In Microwaves Theory, Application in Material Processing IV; Clark, D. E., Sutton, W. H., Lewis, D. A., Eds.; American Ceramic Society: Westerville, Ohio, 1997; pp 357- 365
  8. Ahluwalia, V. K.; Kidwai, M. In New Trends in Green Chemistry; Anamaya Publishers: New Delhi, 2003
  9. Dittmer, D. C. Chem. Ind. 1997, 779
  10. Ganellin, C. R. In Medicinal Chemistry The Role of Organic Chemistry in Drug Research; Roberts, S. M.; Price, B. J., Eds.; Academic Press: New York, USA, 1985; pp 93-119
  11. Rotstein, D. M.; Kertesz, D. J.; Walker, K. A. M.; Swinney, D. C. J. Med. Chem. 1992, 35, 2818 https://doi.org/10.1021/jm00093a015
  12. Sensui, H.; Ichikawa, J.; Sato, S. Jpn. Kokai Tokyo Koho JP 62,94,841
  13. Sensui, H.; Ichikawa, J.; Sato, S. Chem. Abstr. 1987, 107, 187436q
  14. Sensui, H.; Ichikawa, J.; Sato, S. Jpn. Kokai Tokyo Koho JP 62,94,841
  15. Sensui, H.; Ichikawa, J.; Sato, S. Chem. Abstr. 1987, 107, 187436q
  16. Liebl, R.; Handte, R.; Mildenberger, H.; Bauer, K.; Bieringer, H. Ger. Offen DE 3,604,042
  17. Liebl, R.; Handte, R.; Mildenberger, H.; Bauer, K.; Bieringer, H. Chem. Abstr. 1987, 108, 6018g
  18. Ucucu, U.; Karaburun, N. G.; Isikdag, I. Farmaco 2001, 56, 285 https://doi.org/10.1016/S0014-827X(01)01076-X
  19. Wolkenberg, S. E.; Wisnosk, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6(9), 1453 https://doi.org/10.1021/ol049682b
  20. Pozherskii, A. F.; Soldatenkov, A. T.; Katritzky, A. R. Heterocycles in Life, Society; Wiley: New York, 1997; p 179
  21. Lombardino, J. G.; Wiseman, E. H. J. Med. Chem. 1974, 17, 1182 https://doi.org/10.1021/jm00257a011
  22. Phillips, A. R.; White, H. L.; Rosen, S. Eur. Pat. Appl. EP 58,890, 1982
  23. Phillips, A. R.; White, H. L.; Rosen, S. Chem. Abstr. 1982, 98, 53894z
  24. Radziszewski, B. Ber. 1882, 15, 1493 https://doi.org/10.1002/cber.18820150207
  25. Grimmett, M. R. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: New York, 1996; Vol. 3, p 77
  26. Balalaie, S.; Arabanian, A.; Hashtroudi, M. S. Montash. Chem. 2000, 131, 945 https://doi.org/10.1007/s007060070049
  27. Usyatinsky, A. Y.; Khmelnitsky, Y. L. Tetrahedron Lett. 2000, 41, 5031 https://doi.org/10.1016/S0040-4039(00)00771-1
  28. Balalaie, S.; Hashem, M. M.; Akhbari, M. Tetrahedron Lett. 2003, 44(8), 1709 https://doi.org/10.1016/S0040-4039(03)00018-2
  29. Sarshar, S.; Siev, D.; Mjalli, M. M. Tetrahedron Lett. 1996, 37, 835 https://doi.org/10.1016/0040-4039(95)02334-8
  30. Wasserman, H. H.; Long, Y. O.; Zhang, R.; Parr, J. Tetrahedron Lett. 2002, 43, 3351 https://doi.org/10.1016/S0040-4039(02)00548-8
  31. Kamitori, Y. J. Heterocycl. Chem. 2001, 38, 773 https://doi.org/10.1002/jhet.5570380339
  32. Kidwai, M.; Saxena, S.; Mohan, R.; Venkataramanan, R. J. C. S. Perkin Trans. 1 2002, 16, 1845
  33. Kidwai, M.; Mohan, R. Canadian J. Chem. 2004, 82, 427 https://doi.org/10.1139/v03-191
  34. Krieg, B.; Manecke, G. Z. Naturforschg 1967, 22b, 132
  35. Kidwai, M.; Rastogi, S.; Saxena, S. Bull. Korean Chem. Soc. 2004, 25(1), 119 https://doi.org/10.5012/bkcs.2004.25.1.119
  36. Kidwai, M.; Mothsra, P.; Mohan, R.; Biswas, S. Bioorg. Med. Chem. Lett. 2005, 15(14), 915 https://doi.org/10.1016/j.bmcl.2004.12.049
  37. Davidson, D.; Weiss, M.; Jelling, M. J. Org. Chem. 1937, 2, 319 https://doi.org/10.1021/jo01227a004
  38. Whiten, D. M.; Sonnenberg, J. J. Org. Chem. 1964, 29, 1926 https://doi.org/10.1021/jo01030a064
  39. Japp, F. R.; Robinson, H. H. Chem. Ber. 1882, 15, 1269
  40. Weiss, M. J. Org. Chem. 1952, 74, 5193
  41. Gompper, R. Chem. Ber. 1957, 90, 37

Cited by

  1. More Sustainable Approaches for the Synthesis of N-Based Heterocycles vol.109, pp.6, 2009, https://doi.org/10.1021/cr800462w
  2. -Nucleosides from 1,2- and 1,3-Diketones vol.28, pp.3, 2009, https://doi.org/10.1080/15257770902830997
  3. Synthesis of 2,4,5-triarylimidazoles in aqueous solution, under microwave irradiation vol.12, pp.6, 2010, https://doi.org/10.1039/b925177d
  4. vol.3, pp.2, 2010, https://doi.org/10.1080/17518250903583680
  5. Ammonium metavanadate as an efficient catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles vol.48, pp.3, 2011, https://doi.org/10.1002/jhet.548
  6. Synthesis, Properties, and Structures of Salts with the Reineckate Anion, [CrIII(NCS)4(NH3)2]-, and Large Organic Cations vol.637, pp.10, 2011, https://doi.org/10.1002/zaac.201100091
  7. Convenient One-Pot Synthesis of 2,4,5-Triaryl-1H-imidazoles from Arylaldehydes, Benzyl Alcohols, or Benzyl Halides with HMDS in the Presence of Molecular Iodine vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1231
  8. -TSA Catalyzed Synthesis of 2,4,5-Triarylimidazoles from Ammonium Heptamolybdate Tetrahydrate in TBAI vol.54, pp.4, 2013, https://doi.org/10.1002/jccs.200700121
  9. An Efficient Synthesis of Tri- and Tetrasubstituted Imidazoles from Benzils Using Functionalized Chitosan as Biodegradable Solid Acid Catalyst vol.54, pp.26, 2015, https://doi.org/10.1021/acs.iecr.5b00511
  10. Highly efficient and simple protocol for synthesis of 2,4,5-triarylimidazole derivatives from benzil using fluorinated graphene oxide as effective and reusable catalyst vol.43, pp.7, 2017, https://doi.org/10.1007/s11164-016-2847-6
  11. Facile, eco-friendly, one-pot protocol for the synthesis of indole-imidazole derivatives catalyzed by amino acids vol.47, pp.16, 2017, https://doi.org/10.1080/00397911.2017.1332766
  12. An Efficient Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted-1H-imidazoles. vol.37, pp.16, 2005, https://doi.org/10.1002/chin.200616129
  13. Sulphanilic Acid Catalyzed Facile One-pot Synthesis of 2,4,5-Triarylimidazoles From Benzil/Benzoin and Aromatic Aldehydes vol.51, pp.5, 2005, https://doi.org/10.5012/jkcs.2007.51.5.418
  14. Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidazoles using HClO4–SiO2 as novel heterogeneous catalyst vol.266, pp.1, 2007, https://doi.org/10.1016/j.molcata.2006.10.048
  15. L-Proline as an Efficient Catalyst for the Synthesis of 2,4,5-Triaryl-1H-Imidazoles vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.1963
  16. Four-Component, One-Pot Synthesis of Tetra-Substituted Imidazoles Using a Catalytic Amount of MCM-41 or p-TsOH vol.40, pp.9, 2005, https://doi.org/10.1080/00397910903068204
  17. One-Pot Synthesis of 2,4,5-Triarylimidazoles Catalyzed by Copper (II) Trifluoroacetate Under Solvent-Free Conditions vol.40, pp.3, 2005, https://doi.org/10.1080/15533171003629055
  18. Potassium dihydrogen phosphate catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles vol.21, pp.4, 2005, https://doi.org/10.1016/j.cclet.2009.11.012
  19. One-Pot Synthesis of Imidazole-4-Carboxylates by Microwave-Assisted 1,5-Electrocyclization of Azavinyl Azomethine Ylides vol.2010, pp.22, 2005, https://doi.org/10.1002/ejoc.201000434
  20. Efficient, green and solvent-free synthesis of tetrasubstituted imidazoles using SbCl3/SiO2 as heterogeneous catalyst vol.125, pp.4, 2005, https://doi.org/10.1007/s12039-013-0450-6
  21. Environmentally Benign Synthesis of Five-Membered 1,3-N,N-Heterocycles by Microwave Irradiation vol.45, pp.8, 2015, https://doi.org/10.1080/00397911.2013.825808
  22. Review on the Synthesis of Six-MemberedN,N-Heterocycles by Microwave Irradiation vol.45, pp.10, 2005, https://doi.org/10.1080/00397911.2013.827208
  23. Nife2o4@Sio2pra/PC-Ni(II) as a highly efficient catalyst for microwave promoted one pot synthesis of tetra substituted imidazoles vol.73, pp.13, 2005, https://doi.org/10.1080/00958972.2020.1802019
  24. Synthesis, Biological Evaluation and Docking Studies of 1,2,4,5-Tetrasubstituted Imidazoles as Antibacterial Agents: Use of Niobia Supported Heteropoly Tungstate as an Efficient Reusable Catalyst vol.33, pp.10, 2005, https://doi.org/10.14233/ajchem.2021.23181
  25. A green perspective: Synthesis of 2-chloro-3-formylquinolines and its derivatives vol.51, pp.2, 2005, https://doi.org/10.1080/00397911.2020.1824277