References
- Reitz, J. B.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 11467 https://doi.org/10.1021/ja981579s
- Wu, M. K.; Ashburn, R. J.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Phys. Rev. Lett. 1987, 58, 908 https://doi.org/10.1103/PhysRevLett.58.908
- Anandan, S.; Wen, X.; Yang, S. Mater. Chem. Phys. 2005, 93, 35 https://doi.org/10.1016/j.matchemphys.2005.02.002
- Hsieh, C. T.; Chen, J. M.; Lin, H. H.; Shih, H. C. Appl. Phys. Lett. 2003, 82, 3316 https://doi.org/10.1063/1.1569043
- Huang, L. S.; Yang, S. G.; Li, T.; Gu, B. X.; Du, Y. W.; Lu, Y. N.; Shi, S. Z. J. Cryst. Growth 2004, 260, 130 https://doi.org/10.1016/j.jcrysgro.2003.08.012
- Zhu, C. L.; Chen, C. N.; Hao, L. Y.; Hu, Y.; Chen, Z. Y. Solid State Commun. 2004, 130, 681 https://doi.org/10.1016/j.ssc.2004.03.031
- Du, G. H.; Tendeloo, G. V. Chem. Phys. Lett. 2004, 393, 64 https://doi.org/10.1016/j.cplett.2004.06.017
- Wang, Z. L.; Kong, X. Y.; Wen, X.; Yang, S. J. Phys. Chem. 2003, B107, 8275
- Wen, X.; Zhang, W.; Yang, S. Langmuir 2003, 19, 5898 https://doi.org/10.1021/la0342870
- Kurmoo, M.; Day, P.; Derory, A.; Estournes, C.; Poinsot, R.; Stead, M. J.; Kepert, C. J. J. Solid State Chem. 1999, 145, 452 https://doi.org/10.1006/jssc.1999.8147
- Ogata, S.; Miyazaki, I.; Tasaka, Y.; Tagaya, H.; Kadokawa, J. I.; Chiba, K. J. Mater. Chem. 1998, 8, 2813 https://doi.org/10.1039/a804557g
- Khan, A. I.; O'Hare, D. J. Mater. Chem. 2002, 12, 3191 https://doi.org/10.1039/b204076j
- Yang, J. H.; Lee, S. Y.; Han, Y. S.; Park, K. C.; Choy, J. H. Bull. Korean Chem. Soc. 2003, 24, 499 https://doi.org/10.1007/s11814-007-0087-6
- Ryu, S. Y.; Yoon, M.; Choy, J. H.; Hwang, S. H.; Frube, A.; Asahi, T.; Masuhara, H. Bull. Korean Chem. Soc. 2003, 24, 446 https://doi.org/10.5012/bkcs.2003.24.4.446
- Fujita, W.; Awaga, K. Inorg. Chem. 1996, 35, 1915 https://doi.org/10.1021/ic950965x
- Fujita, W.; Awaga, K.; Yokoyama, T. Inorg. Chem. 1996, 36, 196 https://doi.org/10.1021/ic960787n
- Rabu, P.; Rouba, S.; Laget, V.; Hornick, C.; Drillon, M. J. Chem. Soc. Chem. Commun. 1996, 1107
- Laget, V.; Hornick, C.; Drillon, M. J. Mater. Chem. 1999, 9, 169 https://doi.org/10.1039/a805870i
- Dunn, J. G.; Muzenda, C. Thermochim. Acta 2001, 369, 117 https://doi.org/10.1016/S0040-6031(00)00748-6
- Asbrink, S.; Norbby, L. J. Acta Cryst. 1970, B26, 8
Cited by
- Liquid−Liquid Biphasic Synthesis of Layered Zinc Hydroxides Intercalated with Long-Chain Carboxylate Ions and Their Conversion into ZnO Nanostructures vol.50, pp.8, 2011, https://doi.org/10.1021/ic1025729
- Fabrication and characterisation of CuO nanotubes electrodeposited into aluminium oxide template in ionic liquid vol.18, pp.3, 2014, https://doi.org/10.1179/143307513X13772663277462
- Controlled Synthesis and Characterization of CuO Nanostructures through a Facile Hydrothermal Route in the Presence of Sodium Citrate vol.2007, pp.14, 2007, https://doi.org/10.1002/ejic.200601029
- Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol) vol.45, pp.6, 2010, https://doi.org/10.1007/s10853-009-4158-4
- Synthesis, Characterization and Magnetic Properties of a Novel Disulfonate-pillared Copper Hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-Butanedisulfonate vol.27, pp.10, 2006, https://doi.org/10.5012/bkcs.2006.27.10.1587
- Fabrication of Hierarchical CuO Microspheres vol.28, pp.3, 2005, https://doi.org/10.5012/bkcs.2007.28.3.477
- CuO Nanotubes Synthesized by the Thermal Oxidation of Cu Nanowires vol.29, pp.12, 2005, https://doi.org/10.5012/bkcs.2008.29.12.2525