Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Modeling and Applications

VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 모델링 및 응용

  • Published : 2005.09.01

Abstract

This paper describes the volumetric data modeling and analysis methods that employ volumetric NURBS or VNURBS that represents heterogeneous objects or fields in multidimensional space. For volumetric data modeling, we formulate the construction algorithms involving the scattered data approximation and the curvilinear grid data interpolation. And then the computational algorithms are presented for the geometric and mathematical analysis of the volume data set with the VNURBS model. Finally, we apply the modeling and analysis methods to various field applications including grid generation, flow visualization, implicit surface modeling, and image morphing. Those application examples verify the usefulness and extensibility of our VNUBRS representation in the context of volume modeling and analysis.

Keywords

References

  1. Kaufman, A. E., 'State-of-the-art in Volume Graphics', In Volume Graphics, Springer, 2000
  2. Elvins, T. T., 'A Survey of Algorithm for Volume Visualization', Computer Graphics, Vol. 15, pp. 194-201, 1992
  3. Hesselink, L., 'Research Issues in Vector and Tensor Field Visualization', IEEE Computer Graphics and Applications, Vol. 14, No.2, pp. 50-56, 1994 https://doi.org/10.1109/38.310726
  4. Bloomenthal, J. et al., Introduction to Implicit Surfaces, Morgan Kaufmann, 1997
  5. Blinn, J. F., 'A Generalization of Algebraic Surface Drawing', ACM Transactions on Graphics, Vol. 1, No.3, pp. 235-256, July 1982 https://doi.org/10.1145/357306.357310
  6. McInerney, T. and Terzopoulos, D., 'Deformable Models in Medical Image Analysis : A Survey', Medical Image Analysis, Vol. 1, No. 2, pp. 91-108, 1996 https://doi.org/10.1016/S1361-8415(96)80007-7
  7. Osborne, F., Pfister, H., Lauer, H., McKenzie, N., Gibson, S., Hiatt, W. and Ohkami, T., 'EM-Cube: An Architecture for Low-cost Real-time Volume Rendering', Eurographics Workshop on Graphics Hardware '97, pp. 131-138, August 1997
  8. Mitchell, D. P. and Netravali, A. N. 'Reconstruction Filters in Computer Graphics', Computer Graphics (Proceedings of SIGGRAPH 88), Vol. 22, No. 4, pp. 221-228, August 1988 https://doi.org/10.1145/378456.378514
  9. Pasko, A., Adzhiev, V., Sourin, A. and Savchenko, V., 'Function Representation in Geometric Modeling: Concepts, Implementation and Applications', The Visual Computer, Vol. 11, No. 8, pp. 429-446, 1995 https://doi.org/10.1007/BF02464333
  10. Pasko, A., Adzhiev, V. and Schmitt, B., 'Constructive Hypervolume Modeling', Technical Report TR-NCCA-2001-01, National Centre for Computer Animation, Boumemouth University, UK, February 2001
  11. Chen, M. and Tucker, J. V., 'Constructive Volume Geometry', Computer Graphics Forum, Vol. 19, No. 4, pp. 281-293, 2000 https://doi.org/10.1111/1467-8659.00464
  12. 박상근, 'VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 개념 및 형성', 한국CAD/CAM학회 논문집, 제10권, 제5호, pp. 303-313, 2005
  13. Piegl, L. and Tiller, W., The NURBS Book, Springer-Verlag, 1995
  14. Nielson, G. M., 'Scattered Data Modeling', IEEE Computer Graphics and Applications, Vol. 12, No. 1, pp. 60-70, 1993
  15. Hartley, P. J. and Judd, C. J., 'Parametrization and Shape of B-spline Curves for CAD', Computer Aided Design, Vol. 12, No. 5, pp. 235-238, 1980 https://doi.org/10.1016/0010-4485(80)90028-7
  16. Schwartz, W., 'Elliptic Grid Generation System for Three-dimensional Configuration Using Poisson's Equation', Numerical Grid Generation in Computational Fluid Dynamics, Hauser, J. and Taylor, C. (eds.) , Pineridge Press Limited, 1986
  17. Thompson, J. F., Warsi, Z. U. A. and Mastin, C., Numerical Grid Generation Foundation and Applications, Elsevier Science Publishing, 1985
  18. Sanna, A., Montrucchio, B. and Montuschi, P., 'A Survey on Visualization of Vector Fields by Texturebased Methods', Research Developments in Pattern Recognition, Vol. 1, No. 1, 2000
  19. Park, S. K. and Lee, K. W., 'High-dimensional trivariate NURBS Representation for Analyzing and Visualizing Fluid Flow Data', Computers & Graphics, Vol. 21, No. 4, pp. 473-482, 1997 https://doi.org/10.1016/S0097-8493(97)00023-X
  20. Globus, A., Levit, C. and Lasinski, T., 'A Tool for Visualizing the Topology of Three-dimensional Vector Fields', In Proceedings IEEE Visualization '91, pp. 33-40, 1991
  21. Helman, J. and Hesselink, L., 'Visualizing Vector Field Topology in Fluid Flows', IEEE Computer Graphics & Applications, Vol. 11, No. 3, pp. 3646, 1991
  22. Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, UK, 1999
  23. Lorensen, W. E. and Cline, H. E., 'Marching Cubes: A High Resolution 3D Surface Construction Algorithm', Computer Graphics (Proceedings of SIGGRAPH 87), Vol. 21, No. 4, pp. 163-169, July 1987 https://doi.org/10.1145/37402.37422
  24. Lee, S., Chwa, K.-Y., Hahn, J. and Shin, S. Y., 'Image Morphing Using Deformation Techniques', J. Visualization and Computer Animation, Vol. 7, No. 1, pp. 3-23, 1996 https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<3::AID-VIS131>3.0.CO;2-U
  25. Wolberg, G., Digital Image Warping, IEEE Computer Society Press, Los Alamitos, CA, 1990
  26. Atluri, S. N. and Zhu, T., 'A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics', Computational Mechanics, Vol. 22, pp. 117-127, 1998 https://doi.org/10.1007/s004660050346
  27. Liu, W.K., Jun, S. and Zhang, Y.F., 'Reproducing Kernel Particle Methods', International Journal for Numerical Methods in Engineering, Vol. 20, pp. 1081-1106, 1995 https://doi.org/10.1002/fld.1650200824