Volumetric NURBS Representation of Multidimensional and Heterogeneous Objects: Concepts and Formation

VNURBS기반의 다차원 불균질 볼륨 객체의 표현: 개념 및 형성

  • Published : 2005.09.01

Abstract

This paper proposes a generalized NURBS model, called Volumetric NURBS or VNURBS for representing volumetric objects with multiple attributes embedded in multidimensional space. This model provides a mathematical framework for modeling complex structure of heterogeneous objects and analyzing inside of objects to discover features that are directly inaccessible, for deeper understanding of complex field configurations. The defining procedure of VNURBS, which explains two directional extensions of NURBS, shows VNURBS is a generalized volume function not depending on the domain and its range dimensionality. And the recursive a1gorithm for VNURBS derivatives is described as a computational basis for efficient and robust volume modeling. In addition, the specialized versions of VNURBS demonstrate that VNURBS is applicable to various applications such as geometric modeling, volume rendering, and physical field modeling.

Keywords

References

  1. Greene, B., The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Vintage Books, 2000
  2. Piegl, L. and Tiller, W., The NURBS Book, Springer-Verlag, 1995
  3. Nielson, G. M., 'Volume Modeling', In Volume Graphics, Springer, 2000
  4. Foley, J. D., van Dam, A., Feiner, S. K. and Hughes, J. F., Computer Graphics: Principles and Practice, Addison-Wesley, Second Edition, 1996
  5. Herbert, F., 'Solid Modeling Using a Volume Encoding Data Structure', Computers & Graphics, Vol. 7, pp. 97-99, 1983 https://doi.org/10.1016/0097-8493(83)90053-5
  6. Fuchs, H., Kedem, Z. M. and Naylor, B. F., 'On Visible Surface Generation by a Priori Tree Structures', Computer Graphics (Proceedings of SIGGRAPH 80), Vol. 14, No. 3, pp. 124-133, July 1980 https://doi.org/10.1145/965105.807481
  7. Wu, Z., Seah, H. S. and Lin, F., 'NURBS Volume for Modeling Complex Objects', In Volume Graphics, Springer, 2000
  8. Winter, A. S. and Chen, M., 'Image-swept Volumes', Computer Graphics Forum, Vol. 21, No.3, pp. 441-450, 2002 https://doi.org/10.1111/1467-8659.t01-1-00604
  9. Requicha, A. A. G., 'Representations for Rigid Solids: Theory, Methods, and Systems', ACM Computing Surveys, Vol. 12, No. 4, pp. 437-464, December 1980 https://doi.org/10.1145/356827.356833
  10. Mitchell, D. P. and Netravali, A. N. 'Reconstruction Filters in Computer Graphics', Computer Graphics (Proceedings of SIGGRAPH 88), Vol. 22, No. 4, pp. 221-228, August 1988 https://doi.org/10.1145/378456.378514
  11. Wilhelms, J. and Challinger, J., 'Direct Volume Rendering of Curvilinear Volumes', Computer Graphics (San Diego Workshop on Volume Visualization), Vol. 24, No.5, pp. 41-47, November 1990
  12. Silva, S., Mitchell, J. S. B. and Kaufman, A. E., 'Fast Rendering of Irregular Grids', Volume Visualization Symposium, pp. 15-22, October 1996
  13. Blinn, J. F., 'A Generalization of Algebraic Surface Drawing', ACM Transactions on Graphics, Vol. 1, No. 3, pp. 235-256, July 1982 https://doi.org/10.1145/357306.357310
  14. Bloomenthal, J. et al., Introduction to Implicit Surfaces, Morgan Kaufmann, 1997
  15. Pasko, A., Adzhiev, V., Sourin, A. and Savchenko, V., 'Function Representation in Geometric Modeling: Concepts, Implementation and Applications', The Visual Computer, Vol. 11, No. 8, pp. 429-446, 1995 https://doi.org/10.1007/BF02464333
  16. Adzhiev, V., Cartwright, R., Fausett, E., Ossipov, A., Pasko, A. and Savchenko, V., 'HyperFun Project: a Framework for Collaborative Multidimensional F-Rep Modeling', Implicit Surfaces '99, Eurographics/ACM SIGGRAPH Workshop, J. Jughes and C. Schlick (Eds.), ENSERB, France, pp. 59-69, 1999
  17. Perlin, K., 'An Image Synthesizer', Computer Graphics (Proceedings of SIGGRAPH 85), Vol. 19, No.3, pp. 287-296, July 1985 https://doi.org/10.1145/325165.325247
  18. Satherley, R. A. and Jones, M. W., 'Extending Hypertextures to Non-geometrically Definable Volume Data', In Volume Graphics, Springer, 2000
  19. Rvachev, V. L., Methods of Logic Algebra in Mathematical Physics, Naukova Dumka Publishers, Kiev, Ukraine (in Russian), 1974
  20. Lorensen, W. E. and Cline, H. E., 'Marching Cubes: A High Resolution 3D Surface Construction Algorithm Computer Graphics (Proceedings of SIGGRAPH 87), Vol. 21, No. 4, pp. 163-169, July 1987 https://doi.org/10.1145/37402.37422
  21. Bloomenthal, J., 'Polygonization of implicit surfaces', Computer Aided Geometric Design, Vol. 5, No. 4, pp. 341-355, 1988 https://doi.org/10.1016/0167-8396(88)90013-1
  22. Fang, S., Srinivasan, R. and Venkataraman, S., 'Volumetric CSG - A Model-based Volume Visualization Approach', Sixth International Conference in Central Europe on Computer Graphics and Visualization, February 1998
  23. Chen, M. and Tucker, J. V., 'Constructive Volume Geometry', Computer Graphics Forum, Vol. 19, No. 4, pp. 281-293, 2000 https://doi.org/10.1111/1467-8659.00464
  24. Chen, M., Tucker, J. V. and Leu, A. A., 'Constructive Representations of Volumetric Environments', In Volume Graphics, Springer, 2000
  25. Pasko, A., Adzhiev, V. and Schmitt, B., 'Constructive Hypervolume Modeling', Technical Report TRNCCA-2001-01, National Centre for Computer Animation, Boumemouth University, UK, February 2001
  26. Nadeau, D. R., 'Volume Scene Graphs', Volume Visualization Symposium, October 2000
  27. Park, S. K. and Lee, K. W., 'High-dimensional Trivariate NURBS Representation for Analyzing and Visualizing Fluid Flow Data', Computers & Graphics, Vol. 21, No. 4, pp. 473-482, 1997 https://doi.org/10.1016/S0097-8493(97)00023-X
  28. deBoor, C., 'On Calculating with B-splines', Journal of Approximation Theory Vol. 6, pp. 50-62, 1972 https://doi.org/10.1016/0021-9045(72)90080-9
  29. Satherley, R. A., Computation and Applications of Distance Fields in Volume Graphics, PhD thesis, University of Wales, Swansea, 2001