$GF(3^m)$상의 전류모드 CMOS 승산기 설계

Design of $GF(3^m)$ Current-mode CMOS Multiplier

  • 나기수 (인하대학교 전자공학과) ;
  • 변기녕 (가톨릭 대학교 정보통신전자공학부) ;
  • 김흥수 (인하대학교 전자공학과)
  • 발행 : 2004.07.01

초록

본 논문에서는 $GF(3^m)$상의 전류모드CMOS 승산기의 설계에 관하여 논의한다. 피 승산항에 원시원소 α를 곱함으로써 나타나는 피 승산항의 변화를 표준기저 표현을 이용하여 수식으로 전개하였다. $GF(3^m)$ 승산 회로를 구성하기 위하여 전류모드 CMOS를 사용하여 GF(3)상의 가산기와 승산기를 설계하였고 시뮬레이션 결과를 보였다. 기본 게이트들을 이용하여 $GF(3^m)$ 승산기를 설계하였고 m=3인 경우에 대하여 예를 보였다. 본 논문에서 제안한승산회로는 그 구성이 블록의 형태로 이루어지므로 $GF(p^m)$ 상에서 p와 m에 대한 확장이 용이하며, VLSI 구현에 유리하다 할 수 있다. 본 논문에서 제안한승산회로를 타 승산회로와 비교하였고, 개선효과를 확인하였다.

In this paper, we discuss on the design of a current mode CMOS multiplier circuit over $GF(3^m)$. Using the standard basis, we show the variation of vector representation of multiplicand by multiplying primitive element α, which completes the multiplicative process. For the $GF(3^m)$ multiplicative circuit design, we design GF(3) adder and multiplier circuit using current mode CMOS technology and get the simulation results. Using the basic gates - GF(3) adder and multiplier, we build the $GF(3^m)$ multiplier circuit and show the examples for the case m=3. We also propose the assembly of the operation blocks for a complete $GF(3^m)$ multiplier. Therefore, the proposed circuit is easily extensible to other p and m values over $GF(p^m)$ and has advantages for VLSI implementation. We verify the validity of the proposed circuit by functional simulations and the results are provided.

키워드

참고문헌

  1. Error Correcting Coding Theory Wicker, S.B.;Bhargava, V.K.
  2. IEEE Trans. Computer v.C-20 no.12 A Cellular-Array Multiplier for GF(2m) Laws, B.A.;Rushford, C.K.
  3. IEEE Trans. Computer v.C-33 Systolic multipliers for finite field GF$(2^m)$ Yeh, C.S.;Reed, I.S.;Truong, T.K.
  4. Computational Method and Apparatus for Finite Field Omura, J.;Massey, J.
  5. IEEE Trans. Comp. v.C-34 VLSI Architecture for Computing Multiplications and Inverses in GF$(2^m)$ Wang, C.C.;Truong, T.K.;Shao, H.M.;Deutsch, L.J.;Omura, J.K.;Reed, I.S.
  6. IEEE Trans. Comp. v.47 no.3 Low-Complexity Bit Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields Koc, C.K.;Sunar, B.
  7. IEEE Trans. Comp. v.C-47 no.2 Efficient Multiplier Architectures for Galois Fields $FG((2^4)^n)$ Paar, C.;Felishmann, P.;Roelse, P.
  8. IEEE Trans. Comp. v.35 Introduction Multiple-Valued Logic Muzio, J.C.
  9. IEEE Comp. Mag. v.21 Multiple-Valued Logic : guest editor's introduction and bibliography Butler, J.T.
  10. IEEE Trans. Comp. v.C-30 no.9 The Prospect for Multivalued Logic : A Technology and Applications View Smith, K.C.
  11. IEICE Trans. Electron. v.E76-C no.3 Design of a Multiple-Valued Cellular Array Kamiura, N.;Hata, Y.;Yamato, K.
  12. IEICETrans. Electron v.E80-C no.7 Design and implementationof a Low-Power Multiple-Valued Current Mode Integrated Circuit with Current-Source Control Hanyu, T.;Kazama, S.;Kameyama, M.
  13. IEICE Trans. Inf. & Syst. v.E82-D no.5 Design of Multiple-Valued Programming Logic Array with Unary Function Generators Hata, Y.;Kamiura, N.;Yamato, K.
  14. IEEE Proc. 30th ISMVL Implementation of Multiple-Valued Multiplier on GF(3m) Using Current Mode CMOS Seoung, H.K.;Choi, J.S.;Shin, B.S.;Kim, H.S.
  15. Linear Sequential Circuits Gill, A.
  16. Error Control Coding Lin, S.
  17. Error Correcting Coding An Introduction Sweeney, P.