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Design of GF(3™) Current-mode CMOS
Multiplier

GF@"Ae d/E= CMOS 4t A4

Gi-Soo Na“, Gi-Young Byun”, Heung-Soo Kim"
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Abstract

In this paper, we discuss on the design of a current mode CMOS multiplier circuit over GF(3"). Using the
standard basis, we show the variation of vector representation of multiplicand by multiplying primitive element
a, which completes the multiplicative process. For the GF(3") multiplicative circuit design, we design GF(3)
adder and multiplier circuit using current mode CMOS technology and get the simulation results. Using the
basic gates - GF(3) adder and multiplier, we build the GF(3™) multiplier circuit and show the examples for
the case m=3.

We also propose the assembly of the operation blocks for a complete GF(3") multiplier. Therefore, the
proposed circuit is easily extensible to other p and m values over GF(p™) and has advantages for VLSI
implementation. We verify the validity of the proposed circuit by functional simulations and the results are
provided.

Key-word : MVL, GF(p"), Current-mode, Ternary, DTOM
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Univ.) Fields are addition, multiplication, division, and
P2 11:20044F 2H 241, EIF5E T H:20044F 7H 9H inversion. If field elements are represented in a
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then addition be
implemented with a simple circuit. But the other
The

implementation of the

standard basis form, can

operations are much more complex. study

focuses on the hardware
fastand low-complexity multiplier over Galois Fields
have been proposed.

In 1971, B.A. Laws® showed a cellular array
multiplier over GF(2™). Since then, many multipliers
have been proposed. C.S. Yehm, Massey*Omuram,
C.C. Wangm, and many researchers showed many

works of their own®".

The previous binary
logic circuits in GF(2™) have many advantages such
layout and high
of
interconnections has been a serious problem for a
binary LSI®.  As

multiple-valued LSI has been expected sincel970. In

as an efficientand easy design,

packing density. But recently, an increase

a solution of this problem,
Multiple Valued Logic(MVL) system, many discrete
logic levels can be defined but not confined to
It the

information content of the digital signals in logic

binary values. is possible to increase

circuits to higher wvalue than Dbinary circuits.
Therefore, the MVL circuits might solve the
interconnection com-plexity, high speed, high

packing density and low power dissipation.

For these reasons, many works have been studied
about multiple-valued logic function realization. In
1981, the first commercially available circuits, in the
form of a four valued read only memory(ROM)
were shown"”. After this, the multiple valued VLSI
has attracted great interest in recent years as one
of the most promising approaches for reducing the
inter—-connection complexity. In 1993, N. Kamiura™
showed a multiple valued cellular array circuits
using CMOS. In 1997, T. Hanyu“z‘ showed a low
power integrated
In 1999, Y.

showed a multiple valued programmable

multiple valued current mode
circuit with current source control.
Hata™
logic array with unary function generators. In 2000,
Seong[]A]proposed MVL ALU wusing current-mode
CMOS over GF(3™).

multiplication between two elements and the addition

Seong et al implemented the

to need to irreducible polynomial arithmetic as a

switch using proposed arithmetic cell.

(55)

CMOS the

compatibility for the requirements of VLSI design,

Current-mode circuits have
and enable on low supply voltages with stable. The
most important of these are the case of summation
of signals and the difficulty in distribution of signals
caused by the fan-out being equal to one.

In this paper, the new multiplier circuit using the
standard basis over GF(3™) was proposed. Proposed
GF(3™) multiplier circuit is composed of parallel
operation structure about each modules and has the
property of high speed because memory components
wasn’t used. As an example, we have designed the
GF(3") and checked the

behavior of the designed circuit by simulation tool.

multiplier circuit over

This paper is organized as follows. In Section II,
we summarize multiplication theory in GF(3™). This
the

Section III. In addition, we provide a ternary adder

algorithm is mapping hardware design in

and aternary multiplier, and symbolize them, and
design GF(3)

current

adder and multiplier circuit using
CMOS the

simulation results. In Section IV, we show the

mode technology and get
circuit design of high parallel multiplier using digit
module(DTOM).
comparisons and conclusions are drawn in Section

V.

transition operating Finally,

II. Multiplication over GF(p™)

Prior to discussing the newly proposed design
method in this paper, it is believed that a brief
discussion of Galois fields would be helpful.

More properties of finite fields are covered in
detail™ ™. A finite field GF(p™ is a number system
containing p™ elements, where p is a prime integer
and m is a positive integer. GF(p™) is an extension
field of the ground field GF(p) of pelements, ie.,
GF(p) = {0, 1, -
GF(p™)

modulo p. The nonzero elements of GF(p") are

,p-1}. All arithmetic operations in

are performed by taking the results of

generated by a primitive element 4, where a is a

root of a primitive irreducible polynomial F(x) over
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GF(p), as below;

FO) = X"+ fraa X"+ o+ fidt 4+ fy @D)

For example, F(x) = x° + 2x + 1 is one of the
primitive irreducible polynomials for GF(3%). The
nonzero elements of GF(3™) can be represented as

the powers of @, ie, GF@3™ = {0, «° a'! a? - |

a7}, Since F(a) = 0, a” = ~fa™——fia'- f
= 2fm71(1m71+"'+2ﬁ0(1+2f0. Therefore an element of
GF(3™) can be also expressed as a polynomial of &
with degree less than m. That is, GF(3™) = { an1Q
mhevgratay | @ € GFQ) for 0 = i = m-1 }.

In the following discussion, the polynomial
representation is used to represent the finite field
GF3™). Let A = am 10" ++aq1a+ ay and B = by 1
a™ 44 a+by be two elements in GF(3™). Then
A+B = S =
(@itbi)moas for 0 = i = m-1. Therefore, addition in

Sm1 @™ Mg a+sy,  where s =
GF(3™) is easily realized by digit operation without
carry, while multiplication is not a easy task.

Suppose P=pp1a™ 4+ +p a+py the product of A
and B, ie., P=AB. P can be written as follows Eq.
().

m-1

. m=1 .
b A ;(b,a) i ;bi(Aa)

m-1

m=1 Dok
2 bQalah) o

From the primitive irreducible polynomial F(x) for
GF(3™, d”x in Eq. (2) is shown below.

(i (i ;
d"V = d% ? %6 U= k =m-1)

=2 fe ¥ (k=0) 3)

IIl. Realization of basic gates over
GF(3)

Most of the multiplier works of GF(2") are built
by traditional gates AND and EX-OR. But these

IKEEE) Vol. 8. No.1

traditional binary gates are not suitable to ternary
logic circuits. Therefore, important new ternary logic
gates introduced in this paper are a ternary adder
and a ternary multiplier. Fig. 1 shows the symbols

of them.

X X
ﬁ@_» 5=, X, nEx9)X,

(a) Adder (b) Multiplier

I 1GR3 71& =8 AE
Fig 1. Basic logic gates over GF(3).

In Fig. 1, xo, x1, s and mare elements of GF(3),
also s=(xoPx1)moas and m=(xoOx1)mods.

Throughout this paper, we will use the operators
® and © to addition and

multiplication, respectively.

imply modulo-3

In this paper, we used "Level 3 parameter
1.5umprocess” of PSICE as a design simulation tool
and unit current of the circuit, orl, was 15uA.

The current mode CMOS circuit diagram over
GF(3) adder is shown in Fig. 2. In Fig. 2, M8, M9
and M10, M11 operate as a current mirror for input
X0 and xi, respectively. M1 is driven by the sum of
two Input currents - xo and x;, and M7 shows the

current value to output by mirror.

M10 M11

(W/L) ratio
M1.,3,4,8~15:(40/2)
M7,19~21: (20/2)

M2,5: (100/2) M6: (120/2)

372, GF3) 7HE7] AlelEd digk dFEE CMOS
32
Fig 2. Current mode CMOS circuit
over GF(3) adder.

(56)
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On the other hand, the M12, 13, 14, 15, 17, 18
connected with the current source M4 and M5 as a
current comparator adjust flowing current amount,
so they can block overflow. That is, current source
M2 generates 2.5[, current and M3 make a copy by
the sum of two input currents. When two input sum
than 2.5, MI19 OFF

showsy=(xo+x1). Moreover, the current amount of

is less is and Output
M7 will be v = (xo+x1)-3Iy when the two input sum
of xo and x; is over 2.5I,.

In Fig. 3, Tr. M8 M9 and M11, M12 operate as
a current mirror for input xo and x;, respectively.

Then, current source M1 is driven by the sum
of Xo and xjand this current value is copied by M?7.
The M14, M15, M16, M17, M18 and M19 connected
with Current source M4 and M5 perform as a
current comparator. Current source M2 generates

reference current 351, and Current source M3
copies the sum of two input currents. When the
copied current is less than reference current 3.5[,
M22 is OFF. According to this, let two copied input
sum current be reduced by M20 and M21 and
Output y=(xotx1)-I is possible to get. We need to
adjust W/L ratio of M6 to 20um/2um for that. Also,
when the copied current is higher than reference
current 3.5I; M22 is ON and then M7 current as
much as the current 2I, copied by M23 and M?24
reduces.

If M25 or M26 connected to each M10 and M13
is off when one of two input current is 0 at one
moment, the value of output current is 0. M25 or

M26 acts like a switch for input current.

M20 M2

M| miz

(W/L) Ratio
M1.3.4.8~19 : (40/2)
M6.7.20~26 : (20/2) M2.5: (140/2)

93, GF(3) $4t7] AlelEe] tg AF{F E= CMOS
32
Fig 3. Current mode CMOS circuit
over GF(3) multiplier.
The

multiplier are illustrated in Fig. 4. Logical levels of

simulation result of ternary adder and

the ternary input/output current are extracted as O,
15uA and 30uA.

(a) Adder

(b) Multiplier

4. GF(3)%49 718 AEE us
AEE EREE!

Fig 4. Simulation result of basic gates

over GF(3).

For in the

discussion is limited to the particular finite field

simplicity description, ensuing
GF(3%. The primitive irreducible polynomial is F=a?
Hhalfia+fa = Table 1

representation of GF(3%) for F = a® + 2a + 1.

3
a“+2a+1. shows a
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C9A 71k Bk F=at2a+ 19 g
GF3)de 94 58
Table 1. Element representation of GF(3®) for a

e
a

primitive irreducible polynomial F= a2a+ 1.

= =
© ™

2G2+ + a()

IS
0o

+ af
+ 2(10

IS
N

20!
2a?
2a2 +2al + a
0 201
It is noted that addition and multiplication of the

IS
o

+ 20l

Vector
Elements  Standard basis representation

a *x=() 0 000
al’ 1 001
al al 010
a’ a’ 100
a’ a' +2a’ 012
a a’+ 2a! 120
a’® 20% + al +2a’ 212
al a?+ al + af 111
a’ a?+2al + 2a° 122
a’ 20 + 20° 202
(X9 (11 + a() 0 1 1
al() az + (Xl 1 1 0
all a?+ al +2a’ 112
al? a?+2aP 102
al 2a° 002
al 2a! 020
al® 20? 200
alf 20! + af 021
al? 202 + al 210
a 121
a 222
o 211
o 101
a 022
a’ 220
a

=

0

Do
e}
—_

[N

al

2a2+a

Q

field element a’to a® result in sums and products

which are, themselves, field elements. In general,
modulo F(x) multiplication may be performed that
the

multiplication process may be taken by modulo F(x).

each partial product generated in simple

When these partial products are added, the result

will necessarily be a modulo F(x) result and

therefore, a field element.

M X}+et3| (Journal of IKEEE) Vol. 8. No.1

V. Circuit design of highly parallel
multiplier using DTOM

In this section, a new designed highly parallel
multiplier using DTOM
P=AB in GF(3™). A similar computing method was

is developed to compute

proposed to multiply the two arbitrary elements in
GF(2™).
discussion is limited to the particular finite field
GF (3.

In order to understand the DTOM multiplier, it is

convenient to begin viewing the scheme of Fig. 5.

For simplicity in description, the ensuing

Fig. 5 shows a multiplier for two elements in
GF(3%. In Fig. 5 the multiplication is taken by
modulo F(x), where F(a)= a® + 2a + 1. The
multiplier in Fig. 5 receives as input signals of two
elements in GF(3%) which may be represented as
3-digit input signals A and B.

The multiplicand A has digits ao, a1, a2 ; @
the digit (LSD). The
multiplier B has digits bo, b1, bz ; by being the LSD.
By the previous Eq. (3), the product Aa may be

Do @Y. DTOM 1Block

being least significant

represented as digits ay =

shifts input signals a” ,al(O) , @ as follows : a”
to a" , a” to @ , and @ to @V and 2a".
And the three digits ao! ,alm s @V are fed into the
next DTOM 2.

The DTOM Block 1 and 2 are identical; they
multiply their inputs by & and produce a result
modulo F(a), which is necessarily a 3-digit signal ;
hence, they are referred to as a Digit Transition
Operating Module. Also, three Ternary Multiplication
computing Modules are identical; They multiply their

@™V @™y ™ by b
respectively and produce bmiap™ " ™V,
bm

computing Modules are operated on their

input digits

(m-1)
s

1a2 respectively. Finally, Ternary Addition

input

digits, providing output signals po, pi1, D,

respectively.
The simulation result of GF(3°)
circuit is illustrated in Fig. 6.

multiplication
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195, GF(3)49) DTOME o] &%
& yE S
Fig. 5. A highly parallel multiplier
using
DTOM over GF(3%).

In Fig. 6, The arbitrary element A(asajap) from
first line to third line over GF(3®) and of each digit
value of another elements B(bgbiby) any element
from forth to sixth line are assumed. These two

elements showed the multiplication result of each

digit from seventh to ninth. In 071.35ms, each digit
of A is 000 and the multiplication result of an

arbitrary B is always to be 000. Also, in
1.35ms™2.7ms, each digit of A is 001 and the
multiplication result of an arbitrary B is soon
shown.

al*h 00 2] [ao

af* 101 af)

al* 01 0 al) (1)
Output digits DTOM Input digits

agﬂ) 00 0 - fo ag)

(XYH) 1 00 -f agt)

a(Z”I) 010 -5 a(zi)

a | “flo oo - -7 |la®,| ©®
Output digits DTOM Input digits

In 2.7ms™4.05ms, it showed the result to multiply
each digit of B to mod(2). After that,
operational result is all satisfied with the operation
over GF(3)

From the previous Eq. (3), the Eq. (4) shows a

each

detailed structure of DTOM by matrix equation.
Also, the generalized structure of DTOM in GF(3™)

N I[Cx_al]
gy

o Tily_idl

T

o DLy _bid

T

B Iile_pll

T m———

B I[Lz_pi]

2
& Jile_pn]

R T taietetute
= Ti0%_nd]
L I Pttt [ b

TLEE

196, GR(3)Ee] sakgl ol g AlEdeld At

Fig. 6 Simulation result of GF(3*) multiplication circuit.
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Table 2. Comparison table of composition gates of multiplicative circuit

. Y h[:?] W [5] . _ This
Terms Law' ° ane Koc™® Parr'” Seong! 8
1-D 2-D 1-D | 2-D paper
1-digit S ; ; ; ; 5
. 8 . 2m? 3m 2m’ 3m | 2m’ m? 9m? 2m 2m”

Multiplier
1 7digit 2 2 2 2 2
Add 2m” 2m 2m” 2m | 2m” | m™~1 |9m™+21m- 9 2m 2m(m-1)

er
MV 2 2
- 10m+2 Tm™+16 | 9m | 2m” - - 5m -

Memory

Switch - m - - - - - 6m -
Inverter - - - - - 2m - m -
Clock
. - 3m 3m 3m | 3m - - m -
time
P ti
rozalga ton 3m - - - - 2m 2m+5 - m
elay

is shown as below Eq.(5)

Using the Eq. (5), ternary multiplier is easy to
generalize for m. Fig. 7 shows the generalized
highly parallel multiplication circuit diagram over
GF(3™).

“ ft 3 S L, g

2 .
d)_x No.of m
by 0

oo -

e

+)

| No. of m

o=
=
=] ==
el

[
=
=

-
ses
1

ey

%

%

297, GF(3™7de] dntste SAks| =,
Fig. 7. A generalized multiplication circuit
over GF(3™).
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V. Comparisons and Conclusions

5.1 Comparisons

In comparison, we compared the proposed circuit
with five types of multiplier. Table 2 shows the
comparisons in terms of 1-digit multiplier, 1-digit
adder, MVL memory, switch, inverter, clock time
and propagation delay.

Multipliers over GF(2™) need AND gates in case
of 1-digit multiplication and XOR gates in case of
1-digit adder, respectively. Because existing finite
field multiplicativecircuits(Lawm, Yehm, Wang[ﬁ],
Koc® Parr'™) had designed over GF(2"), they aren’t
enough to compare only in terms of the numerical
part.

But Seong’ s paper and this paper are the

multiplier over GF(3"™), so they mean the basic
gates count in each proposed GF(3). In comparison
with Seong’s multiplier, the multiplier in this paper
On the other hand,

many MV Memory,

needs only the basic gate.

Seong’s multiplier needs

Inverter and Switch etc. From a regulation and
unity point of view, we can know the proposed

multiplier is more suitable to VLSI implementation.

5.2 Conclusions
In this paper, a new circuit design to perform a
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GF(3™) The

architecture proposed here allows the multiplica-tive

multiplication  in was  proposed.
operation of two arbitrary elements of GF(3%). In the
previous binary logic case, the operations of addition
and multiplication in a finite field are realized by
AND gates and EX-OR gates,

these gates

respectively. But

are not suitable for ternary logic
circuits. So new ternary logic gates, ternary adder
and ternary multiplier, are showed in this paper.
in GF@3™ is

newly. From these equations,

The multiplication developed by

equations, we can
make the multiplier circuit in GF(3%), and generalized
m. This

implementing a ternary multiplier, which could be

for feature is to bea possibility of
widely used in different applications. Much future
work remains. For example, hardware systems using
MOS are not yet implemented in this paper and
complexity is not compared with other binary and
These

scheduled for further investigations.

ternary multipliers. important aspects are
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