Design of $GF(3^m)$ Current-mode CMOS Multiplier

$GF(3^m)$상의 전류모드 CMOS 승산기 설계

  • 나기수 (인하대학교 전자공학과) ;
  • 변기녕 (가톨릭 대학교 정보통신전자공학부) ;
  • 김흥수 (인하대학교 전자공학과)
  • Published : 2004.07.01

Abstract

In this paper, we discuss on the design of a current mode CMOS multiplier circuit over $GF(3^m)$. Using the standard basis, we show the variation of vector representation of multiplicand by multiplying primitive element α, which completes the multiplicative process. For the $GF(3^m)$ multiplicative circuit design, we design GF(3) adder and multiplier circuit using current mode CMOS technology and get the simulation results. Using the basic gates - GF(3) adder and multiplier, we build the $GF(3^m)$ multiplier circuit and show the examples for the case m=3. We also propose the assembly of the operation blocks for a complete $GF(3^m)$ multiplier. Therefore, the proposed circuit is easily extensible to other p and m values over $GF(p^m)$ and has advantages for VLSI implementation. We verify the validity of the proposed circuit by functional simulations and the results are provided.

본 논문에서는 $GF(3^m)$상의 전류모드CMOS 승산기의 설계에 관하여 논의한다. 피 승산항에 원시원소 α를 곱함으로써 나타나는 피 승산항의 변화를 표준기저 표현을 이용하여 수식으로 전개하였다. $GF(3^m)$ 승산 회로를 구성하기 위하여 전류모드 CMOS를 사용하여 GF(3)상의 가산기와 승산기를 설계하였고 시뮬레이션 결과를 보였다. 기본 게이트들을 이용하여 $GF(3^m)$ 승산기를 설계하였고 m=3인 경우에 대하여 예를 보였다. 본 논문에서 제안한승산회로는 그 구성이 블록의 형태로 이루어지므로 $GF(p^m)$ 상에서 p와 m에 대한 확장이 용이하며, VLSI 구현에 유리하다 할 수 있다. 본 논문에서 제안한승산회로를 타 승산회로와 비교하였고, 개선효과를 확인하였다.

Keywords

References

  1. Error Correcting Coding Theory Wicker, S.B.;Bhargava, V.K.
  2. IEEE Trans. Computer v.C-20 no.12 A Cellular-Array Multiplier for GF(2m) Laws, B.A.;Rushford, C.K.
  3. IEEE Trans. Computer v.C-33 Systolic multipliers for finite field GF$(2^m)$ Yeh, C.S.;Reed, I.S.;Truong, T.K.
  4. Computational Method and Apparatus for Finite Field Omura, J.;Massey, J.
  5. IEEE Trans. Comp. v.C-34 VLSI Architecture for Computing Multiplications and Inverses in GF$(2^m)$ Wang, C.C.;Truong, T.K.;Shao, H.M.;Deutsch, L.J.;Omura, J.K.;Reed, I.S.
  6. IEEE Trans. Comp. v.47 no.3 Low-Complexity Bit Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields Koc, C.K.;Sunar, B.
  7. IEEE Trans. Comp. v.C-47 no.2 Efficient Multiplier Architectures for Galois Fields $FG((2^4)^n)$ Paar, C.;Felishmann, P.;Roelse, P.
  8. IEEE Trans. Comp. v.35 Introduction Multiple-Valued Logic Muzio, J.C.
  9. IEEE Comp. Mag. v.21 Multiple-Valued Logic : guest editor's introduction and bibliography Butler, J.T.
  10. IEEE Trans. Comp. v.C-30 no.9 The Prospect for Multivalued Logic : A Technology and Applications View Smith, K.C.
  11. IEICE Trans. Electron. v.E76-C no.3 Design of a Multiple-Valued Cellular Array Kamiura, N.;Hata, Y.;Yamato, K.
  12. IEICETrans. Electron v.E80-C no.7 Design and implementationof a Low-Power Multiple-Valued Current Mode Integrated Circuit with Current-Source Control Hanyu, T.;Kazama, S.;Kameyama, M.
  13. IEICE Trans. Inf. & Syst. v.E82-D no.5 Design of Multiple-Valued Programming Logic Array with Unary Function Generators Hata, Y.;Kamiura, N.;Yamato, K.
  14. IEEE Proc. 30th ISMVL Implementation of Multiple-Valued Multiplier on GF(3m) Using Current Mode CMOS Seoung, H.K.;Choi, J.S.;Shin, B.S.;Kim, H.S.
  15. Linear Sequential Circuits Gill, A.
  16. Error Control Coding Lin, S.
  17. Error Correcting Coding An Introduction Sweeney, P.