인공배양토 식생지역에서의 페레니얼 라이그래스 생육저해 원인 평가

Evaluation of Growth Inhibition Causes on Perennial Ryegrass(Lolium perennial L.) in Afforesting Area

  • Lee, In-Bog (Department of Horticultural Environment, National Hrticulutral Research Institute) ;
  • Kim, Pil-Joo (Deprtment of Agricultural Chemistry, Kyongsang National University)
  • 투고 : 2004.07.22
  • 심사 : 2004.08.09
  • 발행 : 2004.08.30

초록

도로공사 후 발생되는 절개지 암사면의 토양 침시방지와 조기 식생도입을 위하여 시공되는 인공배양토가 산성 지하수에 노출되었을 때 나타나는 perennial ryegrass의 생육저해 원인을 조사하였다. Perennial ryegrass가 정상적으로 자라는 지역과 피해가 발생한 지역에서 각각 채취한 인공배양토의 화확적 특성과 인공배양토 추출물들에 대한 라이그래스 생육반응에는 현저한 차이가 없었다. 그러나 인공배양토를 시공한 후 피해가 발생한 지역의 배경토양은 정상지역의 배경토양에 비해 pH가 매우 낮고(pH 3.6), 추출성 철과 알루미늄의 함량이 현저하게 높았으며, 피해지역에서 채취한 토양의 물 추출물에 대한 라이그래스의 발아 및 뿌리 생육은 심한 저해 현상을 보였다. 피해지역에서 채취한 인공배양토와 배경토양에 대한 X-ray 분석결과 각각의 시료에서 jaroslte가 발견되었으며, 이는 라이그래스 생육저해의 원인이 피해지역 인근에서 용출되는 pyrite를 함유하는 산성지하수(pH 3.3)에 기인함을 암시한다. $Al^{3+}$$Fe^{2+}$, $Fe^{3+}$ 표준용액을 이용하여 라이그래스의 뿌리생장율을 50% 수준까지 감소시키는 $EC_{50}$값을 조사한 결과, 산성지하수와 유사한 pH 환경(pH 3.3)에서 라이그래스에 대한 $Al^{3+}$$Fe^{2+}$, $Fe^{3+}$$EC_{50}$값은 자각 0.5, 0.3, 19 mM 이었다. 이러한 결과는 산성 환경하에서는 매우 낮은 $Al^{3+}$$Fe^{2+}$ 농도수준에서 조차 라이그래스의 생장이 현저히 억제될 수 있으며, 산성지하수에 포함된 pyrite에 기인하는 낮은 pH, $Al^{3+}$$Fe^{2+}$ 이온용액이 라이그래스 생장저해의 직접적인 원인임을 의미한다.

To minimize the danger of soil erosion and settle habitats earlier, afforestation, which vegetates bare slopes, is selected as an environmental recovering technology. Large portions of these areas often are suffered by a bad germination and growth inhibition of sprayed seeds. Afforested materials collected in the normal and damaged sites were not any big difference in chemical characteristics and biological response to ryegrass. But background soil of the damaged site has very low pH (3.6) and high contents of iron and aluminum compared with them of the normal sites. Both germination and root growth of ryegrass were inhibited severely in the water extracts of damaged soils, but not in the water extracts of normal sites. Groundwater collected nearby the damaged sites was very strong acidic (pH 33) and exhibited a high value of electrical conductivity and high contents of iron and aluminum. In the ground water, germinated ryegrass was scarcely grown. In Al standard solution, the root growth of ryegrass was inhibited over 50% in 0.5 mM in pH 3.5-4.5 and in 1.4 mM in pH 5.5, which seems to be related to $Al^{3+}$ activity in solution. In the ferric Fe ($Fe^{3+}$) standard solution, ryegrass growth was inhibited over 50% in the concentration of 14-19 mM in root and 23-25 mM in shoot. This strong tolerance of ryegrass to $Fe^{3+}$ might be concerned with the very low activity of $Fe^{3+}$ at pH 3.5-5.5. In contrast, ryegrass responded very sensitively to ferrous Fe ion ($Fe^{2+}$), especially in root growth: $Fe^{2+}$ concentrations corresponding to 50% growth reduction were 0.3-0.4 mM at pH 3.5-5.5 in roots. This high growth inhibition should be related to the high ion activity of $Fe^{2+}$ irrespective of different pH conditions. In conclusion, low pH and high contents of $Fe^{2+}$ and aluminum seem to be caused by pyrite and be closely related to the growth inhibition of ryegrass seeded in afforested area.

키워드

참고문헌

  1. Allison, J. D., and D. S. Brown. 1995. MINTEQA2/PRODEFA2-A geochemical speciation model and interactive preprocessor. p. 241-252. In R. H. Leoppert, A. P. Schwab, and S. Goldberg (ed.) Chemical equilibrium and reaction models. SSSA special publication No. 42. Soil Science Society of America, Inc., Madison, WI, USA.
  2. Attanandana, T. 1971. Amelioration of an acid sulfate soil. MS Thesis, University of The Philippines at Los Banos, Laguna, The Philippines
  3. Brady, D. J., D. G. Edwards, C. J. Asher, and F. P. C. Blamey. 1993. Calcium amelioration of aluminum toxicity effects on root hair development in soybean [Glycine max (L.) Merr.]. New Phytol. 123:531-538 https://doi.org/10.1111/j.1469-8137.1993.tb03765.x
  4. Care, D. 1994. The effect of aluminum concentration on root hairs in white clover (Trifolium repens L.). In R. A. Data, N. J. Grundon, G. E. Rayment, and M. E. Probert (ed.) Plant-soil interaction at low pH: Principles and management. Kluwer Academic Publishers, Dordrecht, The Netherlands
  5. Clarkson, D. T. 1965. The effect of aluminum and some trivalent metal cations on cell division in the root apices of Allium cepa. Ann. Bot. 29:309-351 https://doi.org/10.1093/oxfordjournals.aob.a083953
  6. Foy, C. D., E. M. Chaney, and M. C. White. 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29:511-566 https://doi.org/10.1146/annurev.pp.29.060178.002455
  7. Foy, C. D. 1988. Plant adaptation to acid, aluminum-toxic soils. Commun. Soil Sci. Plant Anal. 19:959-987 https://doi.org/10.1080/00103628809367988
  8. Hanhart, K., D. van Ni, N. Bakker, F. Bil, I. Postma, and M. E. F. van Mensvoort. 1997. Surface water management under varying drainage conditions for rice on an acid sulphate soil in the Mekong Delta, Vietnam. Agr. Water Manage.33:99-116 https://doi.org/10.1016/S0378-3774(96)01298-X
  9. Kinraide, T. B., and D. R. Parker. 1989. Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ. 12:479-487 https://doi.org/10.1111/j.1365-3040.1989.tb02120.x
  10. Lee, I. B. 1997. Composting of alum paper mill sludge and characteristics on crop growth and soil properties in paper mill sludge compost-amended soil. Ph.D. Thesis. Chungnam National University, Daejon, Korea
  11. Lee, I. B., and K. W. Chang. 1999. pH buffer capacity and acidification resistance of alum paper mill sludge. J. Korean. Soc. Soil Sci. Fert. 32:1-6
  12. McKeague, J. A., and J. H. Day. 1966. Dithionite and oxalate-extractable Fe and Al as aids in differentiating of various classes of soils. Can. J. Soil Sci. 46:13-22 https://doi.org/10.4141/cjss66-003
  13. Moore, D. M., and R. C. Reynolds. 1997. X-ray diffraction and the identification and analysis of clay minerals. Oxford Univ. Press, Oxford, UK
  14. Nhung, M. M., and F. N. Ponnamperuma. 1966. Effects of calcium carbonate, manganese dioxide, ferric hydroxide and prolonged flooding on chemical and electrochemical changes and growth of rice in a flooded acid sulphate soil. Soil Sci. 102:29-41 https://doi.org/10.1097/00010694-196607000-00004
  15. Nordstrom, D. K. 1982. Aqueous pyrite oxidation and the cosequent formation of secondary iron minerals. p. 37-56. In J. A. Kittrick, D. S. Panning and L. R. Hossner (ed.) Acid sulfate weathering. Soil Sci. Soc. Am. Special Publ. No. 10. Madison, WI, USA
  16. Olson, R. V., and R. Ellis. 1982. Iron. In A. L. Page (ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA
  17. Pavan, M. A., and F. T. Bingham. 1982. Toxicity of aluminum to coffee seedlings grown in nutrient solution. Soil Sci. Soc. Am. J. 45:993-997
  18. Roy, A. K., A. Sharma, and G. Talukder. 1988. Some aspects of aluminum toxicity in plants. Bot. Rev. 54:145-178 https://doi.org/10.1007/BF02858527
  19. Schaedle, M., F. C. Thornton, D. J. Raynal, and H. B. Tepper. 1989. Response of tree seedlings to aluminum. Tree Physiol. 5:337-356 https://doi.org/10.1093/treephys/5.3.337
  20. Shuman, L. M. 1994. Mineral nutrition. p. 149-182. In R. E. Wilkinson (ed.) Plant-environment interactions. Marcel Dekker, Inc., New York, NY, USA
  21. Zucconi, F., A. Pera, M. Forte, and M. de Bertoldi. 1981. Evaluating toxicity of immature compost. Biocycle 22:54-57