DOI QR코드

DOI QR Code

Effects of Ti Underlayer on Microstructure in Cu(B)/Ti/SiO2 Structure upon Annealing

Cu(B)/Ti/SiO2 구조를 열처리할 때 일어나는 미세구조 변화에 미치는 Ti 하지층 영향

  • Lee Jaegab (School of Advanced Materials Engineering, Kookmin University)
  • Published : 2004.12.01

Abstract

Annealing of $Cu(B)/Ti/SiO_2$ in vacuum has been carried out to investigate the effects of Ti underlayer on microstructure in $Cu(B)/Ti/SiO_2$ structures. For comparison, $Cu(B)/Ti/SiO_2$ structures was also annealed in vacuum. Three different temperature dependence of Cu growth can be seen in $Cu(B)/Ti/SiO_2$; B precipitates- pinned grain growth, abnormal grain growth, normal grain growth. The Ti underlayer having a strong affinity for B atoms reacts with the out-diffused B to the Ti surface and forms titanium boride at the Cu-Ti interface. The formation of titanium boride acts as a sink for the out-diffusion of B atoms. The depletion of boron in grain boundaries of Cu films, as results of the rapid diffusion of B along the grain boundaries and the insufficient segregation of B to the grain boundaries, induces grain boundaries to migrate and causes the abnormal grain growth. The increased bulk diffusion coefficient of B within Cu grains can be responsible for the normal grain growth occurring in the annealed $Cu(B)/Ti/SiO_2\;at\;600^{\circ}C$. In contrast, the $Cu/SiO_2$ structures show only the abnormal growth of grains and their sizes increasing as the temperature increases above $400^{\circ}C$.

Keywords

References

  1. N. Awaya and Y. Arita, J. Electron. Mater., 21, 959 (1992) https://doi.org/10.1007/BF02684203
  2. A. Jain, T. T. Kodas, R. Jairath and MJ. Hampden-Smith, J. Vac. Sci. Technol., B11, 2107 (1993) https://doi.org/10.1116/1.586550
  3. J. Lin and M. Chen, Jpn. J. Appl. Phys., Part 1, 38, 4863 (1999) https://doi.org/10.1143/JJAP.38.4863
  4. S. P. Murarka and S. Hymes, Crit. Rev, Solid State Mater. Sci., 20, 87 (1995) https://doi.org/10.1080/10408439508243732
  5. Y. J. Park, V. K. Andleigh and C. V. Thompson, J. Appl. Phys., 85, 3546 (1999) https://doi.org/10.1063/1.369714
  6. C. Whitman, M. M. Moslehi, A. Paranjpe, L. Velo and T. Omstead, J. Vac. Sci Technol., A 17, 1893 (1999) https://doi.org/10.1116/1.581700
  7. J.-W. Kim, K. Mimura and M. Isshiki, Applied Surface Science, 217 (2003)
  8. W. H. Lee, B. S. Cho, B. J. Kang, H. J. Yang, J. G. Lee, I. K. Woo, S. W. Lee, J. Jang, G. S. Chae and H. S. Soh, Appl. Phy. Lett., 79, 24 (2001) https://doi.org/10.1063/1.1383571
  9. J. M. E. Harper, J. Gupta, D. A. Smith, J. W. Chang, K. L. Holloway, C. Cabral, Jr., D. P. Tracy and D. B. Knorr, Appl. Phys. Lett., 65(2), 11 (1994) https://doi.org/10.1063/1.112664
  10. S. J. Hong, S. Lee, H. J. Yang, H. M. Lee, Y. K. Ko, H. N. Hong, H. S. Soh, C. K. Kim, C. S. Yoon, K. S. Ban and J. G. Lee, Semicond. Sci. Technol. 19 (2004) https://doi.org/10.1088/02681242/19/11/018
  11. Fried Sauert, Ernst Schultze-Rhonhof and Wang Shu Sheng, Thermochemical Data of Pure Substrances (Brain, Ihsan) (1989)
  12. King-Ning Tu, James W. Mayer and Leonard C. Feldman, Electronic Thin Film Science (Macmillan Publishing Company) (1992)
  13. J. M. E. Harper, C. Cabral, Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell and C. K. Hu, J. Appl. Phys., 86(5), (1999) https://doi.org/10.1063/1.371086
  14. T. C. Chou, C. Y. Wong, and K. N. Tu, J. Appl. Phys., 62 (1987)

Cited by

  1. Modeling and simulation of solvent extraction processes for purifying rare earth metals with PC88A vol.30, pp.10, 2013, https://doi.org/10.1007/s11814-013-0135-3