Comparative Study of Anti-Apoptotic Genes, Bcl-2 and P35 for the Suppression of Apoptosis Induced in Suspension Culture of Transformed Trichoplusia ni BTI Tn 5B1-4 Cells

  • Lee, Jong-Min (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Sohn, Bong-Hee (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Kang, Pil-Don (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Sang-Uk (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Chung, In-Sik (Department of Genetic Engineering, Kyung Hee University)
  • Published : 2004.12.01

Abstract

To delay the onset of apoptosis in the culture, transformed Tn 5B1-4 cells harboring anti-apoptotic genes, bcl-2 and baculovirus p35, have been established and analyzed for their anti-apoptotic ability in suspension culture using spinner flasks. In the suspension culture at agitation speeds of 100 rpm and 200 rpm, the cell growth of cell clone expressing Bcl-2 protein was much higher than other two clones and the maximum cell density of the clone was 6.0 ${\times}$ 10$^{6}$ cells/ml and 6.2 ${\times}$ 10$^{6}$ cells/ml at day three of the incubation. On the other hand, the cell growth of cell clone expressing baculovirus protein P35 was much higher than other two clones in suspension culture at agitation speed of 300 rpm and the maximum cell density of the clone was 6.1 ${\times}$ 10$^{6}$ cells/ml at day three of the incubation. Based on the pattern of genomic DNA laddering and the microscopic observation of apoptotic bodies, the more apoptotic bodies are induced in Tn 5B1-4 control cell clone at higher agitation speed. This result shows that the shear stress can be a main factor in inducing apoptosis in spinner flask culture. At low agitation speed, cell clone expressing Bcl-2 was more effective in delaying the onset of apoptosis than the cell clone expressing P35. On the other hand, at high agitation speed, cell clones expressing baculovirus P35 was more effective in delaying the onset of apoptosis than the cell clone expressing Bcl-2. Therefore, anti-apoptotic genes, bcl-2 and baculovirus p35, can playa distinct role depending on agitation speed in the suspension culture.

Keywords

References

  1. Adams, J. M. and S. Cory (1998) The Bcl-2 protein family: arbiters of cell survival. Science 28, 1322-1326
  2. Alnemri, E. S., N. M. Robertson, T. F. Fernandes, C. M. Croce and G. Litwack (1992) Overexpressed full-length human BCL2 extends the survival of baculovirus-infected Sf9 insect cells. Proc. Natl. Acad. Sci. USA 89, 7295-7299 https://doi.org/10.1073/pnas.89.16.7295
  3. Bertin, J., S. M. Mendrysa, D. J. LaCount, S. Gaur, J. F. Krebs, R. C. Armstrong, K. J. Tomaselli and P. D. Friesen (1996) Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J. Virol. 70, 6251-6259
  4. Budihardjo, I., H. Oliver, M. Lutter, X. Luo and X. D. Wang (1999) Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. BioI. 15, 269-290 https://doi.org/10.1146/annurev.cellbio.15.1.269
  5. Bump, N. J., M. Hackett, M. Hugunin, S. Seshagiri, K. Brady, P. Chen, C. Ferenz, S. Franklin, T. Ghayur, P. Li, P. Licari, J. Mankovich, L. Shi, A. H. Greenberg, L. K. Miller and W. W. Wong(1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269, 1885-1888 https://doi.org/10.1126/science.7569933
  6. Chung, I. S., R. A. Taticek and M. I. Shuler (1993) Production of human alkaline phosphatase, a secreted glycosylated protein, from a baculovirus expression system and the attachment-dependent cell line Trichoplusia ni BTl Tn 5B1-4 using a split-flow air-lift bioreactor. Biotechnol. Prog. 9, 675-678 https://doi.org/10.1021/bp00024a018
  7. Cotter,T. G. and M. Al-Rubeai (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol. 13, 150-155 https://doi.org/10.1016/S0167-7799(00)88926-X
  8. Dee, K. U., M. L. Shuler and H. A. Wood (1997) Inducing single-cell suspension of BTI-TN5B1-4 insect cells: I. The use of sulfated polyanions to prevention cell aggregation and enhance recombinant protein production. Biotechnol. Bioeng. 54, 191-205 https://doi.org/10.1002/(SICI)1097-0290(19970505)54:3<191::AID-BIT1>3.0.CO;2-A
  9. Green, D. R. and J. C. Reed (1998) Mitochondria and apoptosis. Science 281, 1309-1312 https://doi.org/10.1126/science.281.5381.1309
  10. Green, D. R. (2000) Apoptotic pathway: paper wraps stone blunts scissors. Cell 102, 1-4 https://doi.org/10.1016/S0092-8674(00)00003-9
  11. Hockenbery, D. M., Z. N. Oltvai, X. M. Yin, C. L. Milliman and S. J. Korsmeyer (1993) Bel-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241-251 https://doi.org/10.1016/0092-8674(93)80066-N
  12. Itoh, Y., H. Ueda and E. Suzuki (1995) Overexpression of bcl-2, apoptosis suppressing gene: Prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol. Bioeng. 48, 118-122 https://doi.org/10.1002/bit.260480205
  13. Kharbanda, S., P. Pandey, L. Schofield, S. Israels, R. Roncinske, K. Yoshida, A. Bharti, Z. M. Yuan, S. Saxena, R. Weichselbaum, C. Nalin and D. Kufe (1997) Role for Bel-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc. Natl. Acad. Sci. USA 94, 6939-6942 https://doi.org/10.1073/pnas.94.13.6939
  14. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of head of bacteriophage. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  15. Lee, J. M., K. H. Chang, J. H. Park, Y. H. Lee and I. S. Chung (2001) Production of recombinant endostatin from stably transformed Trichoplusia ni BTl Tn 5B1-4 cells. Biotechnol. Lett. 23, 1931-1936 https://doi.org/10.1023/A:1013726113708
  16. Lin, G., G. Li, R. R. Granados and G. W. Blissard (2001) Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycosylation secretion. In vitro Cell. Dev. Biol. Anim. 37, 293-302 https://doi.org/10.1007/BF02577545
  17. Mastrangelo, A. J., J. M. Hardwick, B. Zou and M. J. Betenbaugh (2000) Part Ⅱ. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol. Bioeng. 67, 555-565 https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<555::AID-BIT6>3.0.CO;2-T
  18. Mercille, S. and B. Massie (1994) Induction of apoptosis in nutrient deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 44,1140-1154 https://doi.org/10.1002/bit.260440916
  19. Mercille, S., P. Jolicoeur, C. Gervais, D. Paquette, D. D. Mosser and B. Massie (1999) Dose-dependent reduction of apoptosis in nutrient-deprived cultures of NS/O myeloma cells transfected with the E1B-19K adenoviral gene. Biotechnol. Bioeng, 63, 516-528 https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<516::AID-BIT2>3.0.CO;2-9
  20. McKenna, K. A. and R. R. Granados (1994) Methods of adapting anchorage-dependent cell lines to suspension conditions. U. S. patent: 5,348,877
  21. Nunez, G., L. London, D. Hockenbery, M. Alexander, J. P. McKearn and S. J. Korsmeyer (1990) Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor- deprived hemopoietic cell lines. J. Immunol. 144, 3602-3610
  22. Perani, A., R. P. Singh, R. Chauhan and M. Al-Rubeani (1998) Variable functions of bcl-2 in mediating bioreactor stressinduced apoptosis in hybridoma cells. Cytotechnology 28, 177-188 https://doi.org/10.1023/A:1008002319400
  23. Perreault, J. and R. Lemieux (1994) Essential role of optimal protein synthesis in preventing the apoptotic death of cultured B cell hybridomas. Cytotechnology 13, 99-105 https://doi.org/10.1007/BF00749936
  24. Reed, J. C. (1994) Bcl-2 and the regulation of programmed cell death. J. Cell BioI. 124, 1-6 https://doi.org/10.1083/jcb.124.1.1
  25. Reed, J. C. (1997) Double identity for proteins of the Bcl-2 family. Nature 19, 773-776
  26. Rosse, T., R. Olivier, L. Monney, M. Rager, S. Conus, I. Fellay, B. Jansen and C. Borner (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391, 496-499 https://doi.org/10.1038/35160
  27. Sah, N. K., T. K. Taneja, N. Pathak, R. Begum, M. Athar and S. E. Hasnain (1999) The baculovirus antiapoptotic p35 gene also functions via an oxidant-dependent pathway. Proc. Natl. Acad. Sci. USA 96, 4838-4843 https://doi.org/10.1073/pnas.96.9.4838
  28. Shimizu, S., Y. Eguchi, W. Kamiike, Y. Itoh, J. Hasegawa, K. Yamabe, Y. Otsuki, H. Matsuda and Y. Tsujimoto (1996) Induction of apoptosis as well as necrosis by hypoxia and predominant prevention of apoptosis by Bcl-2 and Bel-XL. Cancer Res. 56, 2161-2166
  29. Simpson, N. H., R. P. Singh, A. Perani, C. Goldenzon and M. Al-Rubeai (1998) In hybridoma cultures, deprivation of any single amino acid leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng, 59, 90-98 https://doi.org/10.1002/(SICI)1097-0290(19980705)59:1<90::AID-BIT12>3.0.CO;2-6
  30. Singh, R. P., M. Al-Rubeai, C. D. Gregory and A. N. Emery (1994) Cell death in boreactors: a role for apoptosis. Biotechnol. Bioeng, 44, 720-726 https://doi.org/10.1002/bit.260440608
  31. Singh, R. P., A. N. Emery and M. Al-Rubeai (1996) Enhancement of survivability of mammalian cells by over expression of the apoptosis suppressor gene bcl-2. Biotechnol. Bioeng. 52, 166-175 https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<166::AID-BIT17>3.0.CO;2-M
  32. Singh, R. P., G. Finka, A. N. Emery and M. Al-Rubeai (1997) Apoptosis and its control in cell culture systems. Cytotechnology 23, 87-93 https://doi.org/10.1023/A:1007971703392
  33. Tinto, A., C. Gabernet, J. Vives, E. Prats, J. J. Cairo, L. Cornudella and F. Godia (2002) The protection of hybridoma cells from apoptosis by caspase inhibition allows culture recovery when exposed to non-inducing conditions. J. Biotechnol. 95, 205-214 https://doi.org/10.1016/S0168-1656(02)00012-3
  34. Villa, P., S. H. Kaufmann and W. C. Earnshaw (1997) Caspases and caspase inhibitors. Trends Biochem Sci. 22, 388-393 https://doi.org/10.1016/S0968-0004(97)01107-9
  35. Vives, J., S. Juanola, J. J. Cairu, E. Prats, L. Cornudella and F. Gudia (2003) Productive effect of viral homologues of bcl-2 on hybridoma cells under apoptosis-inducing conditions. Biotechnol. Prog. 19, 84-89 https://doi.org/10.1021/bp0255715
  36. Vomastek, T. and F. Franek (1993) Kinetics of development of spontaneous apoptosis in B cell hybridoma cultures. Immunol. Lett. 35, 19-24 https://doi.org/10.1016/0165-2478(93)90142-O
  37. Vucic, D., S. Seshagiri and L. K. Miller (1997) Characterization of reaper- and FADD-induced apoptosis in a lepidopteran cell line. Mol. Cell. Biol. 17, 667-676 https://doi.org/10.1128/MCB.17.2.667
  38. Wickham, T. J. and G. R. Nemerow (1993) Optimization of growth methods and recombinant protein production in BTITn5B 1-4 insect cells using the baculovirus expression system. Biotechnol. Prog. 9, 25-30 https://doi.org/10.1021/bp00019a004
  39. Wyllie, A. H., J. F. R. Kerr and A. R. Currie (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251-306 https://doi.org/10.1016/S0074-7696(08)62312-8
  40. Xue, D. and H. R. Horvitz (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377, 248-251 https://doi.org/10.1038/377248a0