Establishment of In Vitro Test System for the Evaluation of the Estrogenic Activities of Natural Products

  • Kim, Ok-Soo (Department of Bioscience and Biotechnology, Silla University) ;
  • Choi, Jung-Hye (Division of Civil and Environmental Engineering, Korean Maritime University) ;
  • Soung, Young-Hwa (Department of Pathology, College of Medicine, The Catholic University of Korea) ;
  • Lee, Seon-Hee (Department of Bioscience and Biotechnology, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, Silla University) ;
  • Ha, Jong-Myung (Department of Bioscience and Biotechnology, Silla University) ;
  • Ha, Bae-Jin (Department of Bioscience and Biotechnology, Silla University) ;
  • Heo, Moon-Soo (Faculty of Applied Marine Science, Cheju National University) ;
  • Lee, Sang-Hyeon (Department of Bioscience and Biotechnology, Silla University)
  • Published : 2004.09.01

Abstract

In order to evaluate estrogenic compounds in natural products, an in vitro detection system was established. For this system, the human breast cancer cell line MCF7 was stably trans-fected using an estrogen responsive chloramphenicol acetyltransferase (CAT) reporter plas-mid yielding MCF7/pDsCAT-ERE119-Ad2MLP cells. To test the estrogenic responsiveness of this in vitro assay system, MCF7/pDsCAT-ERE119-Ad2MLP cells were treated with various concentrations of 17f3-estradiol. Treatments of 10$^{-8}$ to 10$^{-12}$ M 17$\beta$-estradiol revealed significant concentration dependent estrogenic activities compared with ethanol. We used in vitro assay system to detect estrogenic effects in Puerariae radix and Ginseng radix Rubra extracts. Treat-ment of 500 and 50 $\mu\textrm{g}$/ml of Puerariae radix extracts increased the transcriptional activity approximately 4- and 1.5-fold, respectively, compared with the ethanol treatment. Treatment of 500, 50, and 5 $\mu\textrm{g}$/ml of Ginseng radix Rubra extracts increased the transcriptional activity approximately 3.2-,2.7, and 1.4-fold, respectively, compared with the ethanol treatment. These observations suggest that Puerariae radix and Ginseng radix Rubra extracts have effective estrogenic actions and that they could be developed as estrogenic supplements.

Keywords

References

  1. Adlercreutz, H., Does fiber-rich food containing animal lignan precursors protect against both colon and breast cancer? An extension of the 'fiber hypothesis.' Gastroenterology, 86, 761-764 (1984)
  2. Adlercreutz, H., Fotsis, T., Heikkinen, R., Dwyer, J. T., Woods, M., Goldin, B. R., and Gorbach, S. L., Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian women and in women with breast cancer. Lancet, 2, 1295-1299(1982)
  3. Amato, P., Christophe, S., and Mellon, P. L., Estrogenic activity of herbs commonly used as remedies for menopausal symptoms. Menopause, 9, 145-150 (2002) https://doi.org/10.1097/00042192-200203000-00010
  4. Anderson, J. J., Ambrose, W. W., and Garner, S. C., Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Proc. Soc. Exp. Biol. Med., 217, 345-350 (1998) https://doi.org/10.3181/00379727-217-44243
  5. Anderson, J. J. and Garner, S. C., Phytoestrogens and bone. Baillieres. Clin. Endocrinol. Metab., 12, 543-557 (1998) https://doi.org/10.1016/S0950-351X(98)80003-7
  6. Arao, T., Udayama, M., Kinjo, J., and Nohara, T., Preventive effects of saponins from the Pueraria lobata root on in vitro immunological liver injury of rat primary hepatocyte cultures. Planta Med., 64, 413-416 (1998) https://doi.org/10.1055/s-2006-957471
  7. Auborn, K. J., Fan, S., Rosen, E. M., Goodwin, L., Chandraskaren, A., Williams, D. E., Chen, D., and Carter, T. H., Indole-3-carbinol is a negative regulator of estrogen. J. Nutr., 133, 2470S-2475S (2003) https://doi.org/10.1093/jn/133.7.2470S
  8. Barnes, S., Effect of genistein on in vitro and in vivo models of cancer. J. Nutr., 125, 777S-783S (1995)
  9. Bronstein, I., Fortin, J., Stanley, P. E., Stewart, G. S., and Kricka, L. J., Chemiluminescent and bioluminescent reporter gene assays. Anal. Biochem., 219, 169-181 (1994) https://doi.org/10.1006/abio.1994.1254
  10. Cao, X., Tian, Y., Zhang, T., Li, X., and Ito, Y., Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J. Chromatogr. A., 855, 709-713 (1999) https://doi.org/10.1016/S0021-9673(99)00715-3
  11. Diel, P., Smolnikar, K., and Michna, H., In vitro test systems for the evaluation of the estrogenic activity of natural products. Planta Med., 65, 197-203 (1999) https://doi.org/10.1055/s-1999-13980
  12. Farnsworth, N. R., Bingel, A. S., Cordell, G. A., Crane, F. A., and Fong, H. H. S., Potential value of plants as sources of new antifertility agents II. J. Pahrm. Sci., 64, 717-754 (1975) https://doi.org/10.1002/jps.2600640504
  13. Guerra, M. C., Speroni, E., Broccoli, M., Cangini, M., Pasini, P., Minghett, A., Crespi-Perellino, N., Mirasoli, M., Cantelli-Forti, G., and Paolini, M., Comparison between Chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci., 67, 2997-3006 (2000) https://doi.org/10.1016/S0024-3205(00)00885-7
  14. Hirakura, K., Morita, M., Nakajima, K., Sugama, K., Takagi, K., Niitsu, K., Ikeya, Y., Maruno, M., and Okada, M., Phenolic glucosides from the root of Pueraria lobata. Phytochemistry, 46, 921-928 (1997) https://doi.org/10.1016/S0031-9422(97)00371-3
  15. Howes, M. J., Perry, N. S., and Houghton, P. J., Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders. Phytother. Res., 17, 1-18 (2003) https://doi.org/10.1002/ptr.1280
  16. Jung, N. P. and Jin, S. H., Studies on the physiological and biochemical effects of Korean ginseng. Kor. J. Ginseng Sci., 20, 431-471 (2000)
  17. Keung, W. M. and Vallee, B. L., Daidzin and its antidipsotropic analogs inhibit serotonin and dopamine metabolism in isolated mitochondria. Proc. Natl. Acad. Sci. U.S.A., 95, 2198-2203 (1998a) https://doi.org/10.1073/pnas.95.5.2198
  18. Keung, W. M. and Vallee, B. L., Kudzu root: an ancient Chinese source of modern antidipsotropic agents. Phytochemistry, 47, 499-506 (1998b) https://doi.org/10.1016/S0031-9422(97)00723-1
  19. Knight, D. C. and Eden, J. A., A review of the clinical effects of phytoestrogens. Obstet. Gynecol., 87, 897-904 (1996)
  20. Lee, H. P., Gourley, L., Duffy, S. W., Esteve, J., Lee, J., and Day, N. E., Dietary effects on breast-cancer risk in Singapore. Lancet, 337, 1197-1200 (1991) https://doi.org/10.1016/0140-6736(91)92867-2
  21. Lephart, E. D., West, T. W., Weber, K. S., Rhees, R. W., Setchell, K. D., Adlercreutz, H., and Lund, T. D., Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol. Teratol., 24, 5-16 (2002) https://doi.org/10.1016/S0892-0362(01)00197-0
  22. Lin, R. C., Guthrie, S., Xie, C. Y, Mai, K., Lee, D. Y., Lumeng, L., and Li, T. K., Isoflavonoid compounds extracted from Pueraria lobata suppress alcohol preference in a pharmacogenetic rat model of alcoholism. Alcohol Clin. Exp. Res., 20, 659-663 (1996) https://doi.org/10.1111/j.1530-0277.1996.tb01668.x
  23. Lin, R. C. and Li, T. K., Effects of isoflavones on alcohol pharmacokinetics and alcohol-drinking behaviour in rats. Am. J. Clin. Nutr., 68, 1512S-1515S (1998) https://doi.org/10.1093/ajcn/68.6.1512S
  24. Liu, W. K., Xu, S. X., and Che, C. T., Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci., 67, 1297-1306 (2000) https://doi.org/10.1016/S0024-3205(00)00720-7
  25. Melis, G. B., Paoletti, A. M., Bartolini, R., Tosti Balducci, M., Massi, G. B., Bruni, V., Becorpi, A., Ottanelli, S., Floretti, P., and Gambacciani, M., Isoflavone and low doses of estrogens in the prevention of bone mineral loss in climacterium. Bone Miner., 19, Suppl 1:S49-S56 (1992) https://doi.org/10.1016/0169-6009(92)90866-C
  26. Miyamoto, N. G., Moncollin, V., Egly, J. M., and Chambon, P., Specific interaction between a transcription factor and the upstream element of the adenovirus-2 major late promoter. EMBO J., 4, 3565-3570 (1985)
  27. Nah, S. Y., Park, H. J., and McCleskey, E. W., A trace component of ginseng that inhibits Ca$Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. U.S.A., 92, 8739-8743 (1995) https://doi.org/10.1073/pnas.92.19.8739
  28. Ponglikitmongkol, M., White, J. H., and Chambon, P., Synergistic activation of transcription by the human estrogen receptor bound to tandem responsive elements. EMBO J., 9, 2221-2231 (1990)
  29. Price, K. R. and Fenwich, G. R., Naturally occurring oestrogens in foods-a review. Food Add. Contam., 2, 73-106 (1985) https://doi.org/10.1080/02652038509373531
  30. Setchell, K. D. R., Lawson, A. M., Borriello, S. P., Harkness, R., Gordon, H., Morgan, D. M. L. and Kirk, D. N., Adlercreutz, H., Anderson, L. C., Axelson, M., Lignan formation in manmicrobial involvement and possible roles in relation to cancer. Lancet, 2, 4-7 (1981)
  31. Whitten, P. L. and Naftolin, F., Dietary estrogens-a biologically active background for estrogen action. In New Biology of Steroid Hormones(Hochberg RB, Naftolin F, eds), 155-167, Ravel Press, New York, NY (1991)
  32. Whitten, P. L. and Patisaul, H. B., Cross-species and interassay com-parisons of phytoestrogen action. Environ. Health Perspect, 109 Suppl 1, 5-20 (2001) https://doi.org/10.2307/3434842
  33. Xuan, B., Zhou, Y. H., Yang, R. L., Li, N., Min, Z. D., and Chiou, G. C., Improvement of ocular blood flow and retinal functions with puerarin analogs. J. Ocul. Pharmacol. Ther., 15, 207-216 (1999) https://doi.org/10.1089/jop.1999.15.207
  34. Zhao, L., Chen, Q., and Diaz Brinton, R., Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med.(Maywood), 227, 509-519 (2002) https://doi.org/10.1177/153537020222700716