DOI QR코드

DOI QR Code

Effects of Combined Application of Micronutrients on these Total and Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover

Orchardgrass 및 White clover의 단파 및 혼파 재배에서 미량요소(Fe, Mn, Cu, Zn, Mo, B)의 조합시비가 목초의 총 함량, 상대 함량, 탈취량 및 상호비율 변화에 미치는 영향

  • Published : 2004.06.01

Abstract

This pot experiment was conducted to investigate the effects of combined micronutrient application($T_1$; control, $T_2$; Fe, $T_3$; Fe+Mn, $T_4$; Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ ; Fe+Mn+Cu+Zn+Mo, T$_{7}$; Fe+Mn+Cu+Zn + Mo + B) on forage performance of pure and mixed cultures of orchardgrass and white clover. The fifth part was concerned with the changes in the total and relative contents, uptake amounts, and mutual ratios. of micronutrients in forages. The results obtained are summarized as follows: 1. The relative contents(total contents of 6 micronutrients = 100%) of Fe and Mn were considerably influenced by the antagonism between Fe and Mn, and also were influenced by the differences in Mn-absorption between orchardgrass and white clover. Compared with pure culture, orchardgrass showed high relative contents of Mn, and low relative contents of Fe and B in mixed culture. White clover, however, tended to be exactly opposed to the above trends. In relative contents, the T$_6$ 6/ resulted generally in decrease of Fe. However the $T_7$ resulted in increase of Mn and B. In addition, the $T_7$ resulted in decrease of Cu and Zn in orchardgrass, and Mo in white clover. 2. In general, there were differences in the tendency between the yield changes and the uptake amounts of micronutrients. General differences have been showed in the uptake amounts and mutual ratios of micronutrients based on the forage species, pure/mixed culture, additional fertilization, and antagonism. The uptake amounts of total micronutrients were generally increased by the treatments with increased combination. In uptake amounts, the $T_7$ resulted in the increase of Mn and B, and decrease of Mo. 3. The mutual ratios of Fe/Mn, Fe/Cu, and Mn/Cu were considerably influenced by the antagonism between Fe and Mn. At the $T_7$ , very low ratio of Fe/Mo affected by the T6 tended to be somewhat improved because of the decrease of Mo content. The poor growth of forages at the $T_6$ was improved by the $T_7$ . This fact was likely to be caused by the adequate B/Mo ratio.

Orcharduass 및 white clover의 단파 및 혼파재배조건에서 미량요소 Fe, Mn, Cu, Zn, Mo 및 B의 조합시비가 목초의 생육, 개화, 수양, 양분함량 및 식생구성비율 등에 미치는 영향을 구명하였다. 다양요소 양분을 동일량 시비한 조건에서 7 수준의 미량요소 조합시비는 $T_1$; 대조구, $T_2$; Fe, $T_3$: Fe+Mn, $T_4$; Fe+Mn+Cu, $T_5$ ; Fe+Mn+Cu+Zn, $T_6$ : Fe+Mn+Cu+Zn+Mo 및 $T_7$ ; Fe + Mn +Cu+Zn+Mo + B로 하였다. 본 V보에서는 조합시비가 목초 중 미량요소의 충 함량, 상대함량, 탈취량 및 상호비율의 변화 등에 미치는 영향을 검토하였다. 1) Fe과 Mn-상대함량(총 미량요소 함량=100% 대비)은 이들간의 길항적인 흡수생리와 초종간 he-흡수경합의 차이에 크게 영향을 받았다. orcharduass는 단파에 비해서 혼파재배에서 Mn-상대함량이 더 높았고 B와 Fe-상대함량은 더 낮았으나 white clover는 이와 반대의 경향을 보였다. $T_6$ 6/ 처리에서는 일반적으로 Fe-상대함량의 감소를 보였다. 에서 orchardgrass는 B와 Mn-상대함량의 증가와 Cu와 Zn-상대함량의 감소를 보였으나 white clover는 Mo-상대함량의 감소만 보였다. 2) 미량요소의 탈취량은 일반적으로 수양의 증감에 따른 특성과는 차이를 보였다. 각 미량요소의 탈취량과 미량요소 간 상대함량(당량기준)은 초종, 단파/혼파재배, 추비 및 일부 길항작용의 특성에 따라서 차이를 보였다. 총 미량요소의 탈취량은 일반적으로 증가되는 조합시비 처리에 따라서 증가하였다. Mn을 시비한 조합시비에서는 수양의 면화보다 Fe-탈취량이 상대적으로 더 낮았고 Mn-탈취량은 더 높았다. $T_7$ 처리로 Mn과 B-탈취량은 증가하였고 Mo-탈취량은 감소되었다. 3) Fe/Mn, Fe/Cu와 Mn/Cu 비율은 길항적인 Fe과 Mn 간의 흡수경합에 따라서 크게 영향을 받았다. $T_6$ 처리에 의해서 Fe/Mo 비율은 크게 낮아졌고 이 비율은 $T_7$ 처리로 Mo 함량의 감소와 더불어 다소 높아졌다. B/Mo 비율은 orchardgrass보다 특히 white clover에서 높았고 $T_6$ 에서의 생육불량/황화현상이 $T_7$ 처리에서 양호해진 것은 높아진 B/Mo 비율과도 연관된 것으로 보였다.

Keywords

References

  1. Barbier, S. 1964. Einfluss der Stickstoffduengung auf Ertrag, Artensusammensetzung und Qualitaet einer Kleegrasmischung im Gefassversuch, Z. f. Pflanzenernaehr., Dueng., Bodenk. 107:32-40 https://doi.org/10.1002/jpln.19641070106
  2. Bergmann, W. and P. Neubert. 1976. Pflanzend iagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  3. Brown, J.C., R.S. Holmes and L.O. Tiffin. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  4. Cumbus I.P., D.J. Hornsey and L.W. Robinson. 1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  5. Finck, A. 1969. Pflanzenernaehrung in Stick worten, I. Aufl. Verlag Ferdinand Hirt, Kiel
  6. Fischbeck, G., K.U. Heyland and N. Knauer. 1975. Spezieller Pflanzenbau. Verlag Eugen Ulmer, Stuttgart. 225
  7. Gupta U.C. and E.W. Chipman. 1976. Influence of iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grown on sphagnum peat soil. Plant and Soil. 44:559-566 https://doi.org/10.1007/BF00011375
  8. Hatcher, J.T. and L.V. Wilcox. 1959. Colorimetric determination of boron using carmine. Analytical Chemistry, 22
  9. Hiatt, A.J. and J.L. Ragland. 1963. Manganese toxicity of burley tobacco. Agron. J. 55: 47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  10. Jung, G.A., B.S. Baker. 1973. Forage grasses andlegumes orchardgrass. In; Heath and Barnes:Forages, 3rd edit. The Iowa State Univ. Press, USA. 285-296
  11. Kannan, S. and S. Ramani. 1978. Studies on Molybdenum absorption and transport in bean and rice. Plant Physiol. 62:179-181 https://doi.org/10.1104/pp.62.2.179
  12. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition of tomatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  13. Klapp, E. 1971. Wiesen und Weiden. Verlag Paul Parley, Belin and Hamburg. 155. 191
  14. Koch, O.G. and G.A. Koch-Dedic. 1974. Handbuch der Spurenanalyse. Springer Verlag, Berlin, Heidelberg, New York, 2. Aufl., 825- 832
  15. MacKay, D.C., E.W. Chipman and W.M. Langille. 1964. Crop responses to some micronutrients and sodium on sphagnum peat soil. Soil Sci. Soc. Am. Proc. 28:101-104 https://doi.org/10.2136/sssaj1964.03615995002800010043x
  16. Massumi, A. and A. Finck. 1973. Molybdaen-gehalte einiger Acker-und Gruenlandpflanzen Schleswig-Holsteins in Abhaengigkeit von Boden-reaktion. Z. F. Pflanzenemaehr., Bodenkd. 134:56-65 https://doi.org/10.1002/jpln.19731340108
  17. Matin, A. 1966. Minderung der Molybdaen Toxiditaet an Pflanzen durch andere Naehrstoffe. Dissertation, D 83, Nr. 200, Techn. Univ. Berlin
  18. Moore, D.P., M.E. Harward, D.D. Mason, R.J. Hader, W.L. Lott and W.A. Jackson. 1957. An investigation of some of the relationships between copper, iron, and molybdenum in the growth and accumulations of copper and iron. Soil Sci. Soc. Am. Proc. 21:65-74 https://doi.org/10.2136/sssaj1957.03615995002100010014x
  19. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42:455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  20. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  21. Osullivan, M. 1969. Iron metabolism of grasses. I.Effect of iron supply on some inorganic and organic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  22. Riekels, J.W. and J.C. Lingle 1966. Iron uptake and translocation by tomato plants as influencedby root temperature and manganese nutrition. Plant Physiol. 41:1095-1101 https://doi.org/10.1104/pp.41.7.1095
  23. Shingh, B.R. and K. Steenberg. 1975. Plantresponse to micronutrients. III. Interaction between manganese and zinc in maize and barley plants. Plant and Soil. 40:655-667 https://doi.org/10.1007/BF00010521
  24. Sommers, I.I. and J.W. Shive. 1942. The iron-manganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582