DOI QR코드

DOI QR Code

쇄파대에서 정현파의 쇄파

Wave Breaking of Sinusoidal Waves in the Surf Zone

  • 황종길 (한양대학교 대학원 토목공학과) ;
  • 김영택 (한양대학교 대학원 토목공학과) ;
  • 조용식 (한양대학교 공과대학 토목공학과)
  • Hwang, Jong-Kil (Graduate Student, Dept. of Sivil Engineerin, Hanyaang University) ;
  • Kim, Young-Taek (Graduate Student, Dept. of Sivil Engineerin, Hanyaang University) ;
  • Cho, Yong-Sik (Dept. of Sivil Engineerin, Hanyaang University)
  • 발행 : 2004.06.01

초록

본 연구에서는 쇄파대에서 정현파의 쇄파에 대해 수리모형실험과 수치모형실험을 수행하였으며, 두 실험결과를 비교하였다. 수치해석 모형에서는 Reynolds 방정식을 지배방정식으로 사용하고 난류해석을 위해 $textsc{k}$-$\varepsilon$ 모델을 적용하였으며, 자유수면변위를 추적하기 위해 VOF기법을 사용하였다. 수리모형실험과 수치모형실험 모두 동일한 수심과 주기를 가질 경우, 입사파의 파고가 커질수록 쇄파발생 지점이 경사시작 지점으로부터 가까운 위치로 이동하는 경향을 보였다. 또한, 쇄파발생시 파고비(H/H$_{0}$)는 동일한 수심과 파고를 가질 경우, 주기가 커질수록 증가하는 경향을 보였다.

This study presents a combined experimental and numerical effort to investigate wave breaking of sinusoidal waves in a surf zone. Numerical predictions are verified by comparing to laboratory measurements. The model solves the Reynolds equations and$textsc{k}$-$\varepsilon$ models for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. As the height of incident wave increases, the wave breaking occurs at a closer point of the slope in the numerical model and laboratory experiments with the same depth and period. When a wave breaking occurs, the ratio of wave height becomes larger, with the same wave height and depth, as the period increases.

키워드

참고문헌

  1. 조용식, 전찬후 (2003). '크노이드파의 발생과 최대 처오름높이,' 한국해안해양공학회논문집, 제15권, 제2호, pp. 80-85
  2. Chorin, A.J., (1968). 'Numerical solution of the Navier-Stokes equations.' Math. Comput. 22, pp. 745-862 https://doi.org/10.2307/2004575
  3. Chorin, A.J., (1969). 'On the convergence of discrete approximations of the Navier-Stokes equations.' Math. Comput.. 232, pp. 341-353 https://doi.org/10.2307/2004428
  4. Deigaard, R., Fredsoe, J. and Hedegaard, I.B. (1986). 'Suspended sediment in the surf zone.' Journal of Waterway, Port, Coastal, and Ocean Engineering. Vol. 112, pp. 115-129 https://doi.org/10.1061/(ASCE)0733-950X(1986)112:1(115)
  5. Johns, B. (1978). 'The modeling of tidal flow in a channel using a turbulence energy closure scheme.' J. Phys. Oceanogr. Vol. 8, pp. 1042-1049 https://doi.org/10.1175/1520-0485(1978)008<1042:TMOTFI>2.0.CO;2
  6. Johns, B. and Jefferson, R.J. (1980). 'The numerical modeling of surface wave propagation in the surf zone.' J. Phys. Oceanogr. Vol. 10, pp. 1061-1069 https://doi.org/10.1175/1520-0485(1980)010<1061:TNMOSW>2.0.CO;2
  7. Lemos, C. M. (1992). Wave Breaking. Springer
  8. Liu, P.L.-F. and Lin, P., (1997). 'A numerical model for breaking wave: the volume of fluid method.' Res. Rep. No. CACR-97-02, University of Delaware, USA
  9. Lin, P. (1998). 'Numerical modeling of breaking wave.' PhD thesis, Cornell University, Ithaca, N.Y.
  10. Lin, P. and Liu, P.L.-F., (1998). 'A numerical study of breaking waves in the surf zone.' Journal of Fluid Mechanics, 359, pp. 239-264 https://doi.org/10.1017/S002211209700846X
  11. Lin, P. and Liu, P.L.-F.(1999). 'Internal wave-maker for Navier-Stokes equations models.' Journal of Waterway, Port, Castal, and Ocean Engineering. pp. 207-215 https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)AdditionalInformation
  12. Petit, H.A.H., Tonjes, P., van Gent, M.R.A., and ven den Bosch, P., (1994). 'Numerical simulation and validation of plunging breakers using a 2D Navier-Stokes model.' Proceedings of 24th International Conference of Coastal Engineering., ASCE, pp. 511-524