Nanoscale Fabrication of Biomolecular Layer and Its Application to Biodevices

  • Park, Jeong-Woo (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Nam, Yun-Suk (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Masamichi Fujihira (Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta)
  • 발행 : 2004.03.01

초록

Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immoblized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.

키워드

참고문헌

  1. Biocomputers: The Next Generation from Japan Tomorrow's computers Kaminuma,T.;G.Matsumoto;T.Kaminuma(ed.);G.Matsumoto(ed.)
  2. What, How and Why, Toward the Biochip Toward the biochip Nicolini,C.;C.Nicolini(ed.)
  3. Biocomputers: The Next Generation from Japan Biodevice computers Aizawa,M.;G.Matsumoto;T.Kaminuma(ed.);G.Matsumoto(ed.)
  4. FED J. v.7 The potential for protein engineering in the design of biosensing and bioelectronic devices Cass,A.E.G.
  5. Biosensors: Fundamentals and Applications Turner,A.P.F.;I.Karube;G.S.Wilson
  6. Methods in Enzymology Mosbach,K.
  7. Biosensors: A Practical Approach Cass,A.E.G.
  8. Biosensors: An Introduction Eggins,B.R.
  9. Thin Solid Films v.132 Photoelctrochemical response of optically transparent electrodes modified with Langmuir-Blodgett film consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules Fujihira,M.;K.Nichiyama;H.Yamada https://doi.org/10.1016/0040-6090(85)90459-6
  10. Fundamentals of Photoinduced Electron Transfer Kavarnos,G.J.
  11. Molecular Electronics-Biosensors and Biocomputers Kuhn,H.;F.T.Hong
  12. Nature v.318 Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution Deisenhofer,J.;O.Epp;K.Miki;R.Huber;H.Michel https://doi.org/10.1038/318618a0
  13. Science v.244 Mimicking photosynthesis Gust,D.;T.A.Moore https://doi.org/10.1126/science.244.4900.35
  14. Protein Architecture: Interfacing Molecular Assemblies and Immobilization Biotechnology Lvov,Y.
  15. Bioprocess Eng. v.6 Deposition behavior and photoelectrochemical characteristics of chlorophyll a Langmuir-Blodgett films Choi,H.G.;B.K.Oh;W.H.Lee;J.W.Choi https://doi.org/10.1007/BF02932548
  16. Thin Solid Films v.210;211 Photo-induced electron transfer in molecular heterojunction using flavin-porphyrin Langmuir-Blodgett multilayers Isoda,S.;S.Nishikawa;S.Ueyama;Y.Hanazato;H.Kawakubo;M.Maeda
  17. J. Phys. Chem. A. v.106 Dynamics of photoinduced electron transfer in an amphiphilic $A^{2+}_-S_-D$ triad molecule Sakomura,M.;S.Lin;T.A.Moore;A.L.Moore;D.Gust;M.Fujihira https://doi.org/10.1021/jp012566v
  18. Thin Solid Film v.327 Photoinduced electron transfer in MIM device composed of ferrocene-flavin-viologen-TCNQ molecular heterojunction Choi,J.W.;S.W.Chung;S.Y.Oh;W.H.Lee;D.S.Shin https://doi.org/10.1016/S0040-6090(98)00738-X
  19. Thin Solid Films v.132 Photoelctrochemical response of optically transparent electrodes modified with Langmuir-Blodgett film consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules Fujihira,M.;K.Nichiyama;H.Yamada https://doi.org/10.1016/0040-6090(85)90459-6
  20. Appl. Phys. Lett. v.79 no.10 Rectified photocurrent of the protein-based bio-photodiode Choi,J.W.;Y.S.Nam;W.H.Lee;D.Kim;M.Fujihira https://doi.org/10.1063/1.1399308
  21. Biosens. Bioelectron. v.16 Rectified photocurrent of molecular photodiode consisting of cytochrome c/GFP hetero thin films Choi,J.W.;Y.S.Nam;S.J.Park;W.H.Lee;D.Kim;M.Fujihira https://doi.org/10.1016/S0956-5663(01)00225-1
  22. Science v.294 Reproducible measurement of single-molecule conductivity Cui,X.D.;A.Primak;X.Zarate;J.Tomfohr;O.F.Sankey;A.L.Moore;T.A.Moore;D.Gust;G.Harris;S.M.Lindsay https://doi.org/10.1126/science.1064354
  23. Colloids Surfaces A v.198;200 STM investigation of electron transport features in cytochrome c Langmuir-Blodgett films Khomutov,G.B.;L.V.Belovolova;V.V.Khanin;E.S.Soldatov;A.S.Trifonov
  24. J. Phys. Chem. v.93 Electronic shift register memory based on molecular electron-transfer reactions Hopfield,J.J.;J.N.Onuchic;D.N.Beratan https://doi.org/10.1021/j100354a017
  25. Mol. Cryst. Liq. Cryst. v.371 Shift register memory function of molecular photodiode consisting of flavin/viologen/TCNQ molecular heteroLB films Choi,J.W.;Y.S.Nam;K.S.Cho;S.Park;D.Kim;W.H.Lee https://doi.org/10.1080/10587250108024769
  26. Thin Solid Film v.327/329 Power-law conductivity in merocyanine LB films Hirano,Y.;K.Omata;J.Ishizaki;J.Kawata;Y.F.Miura;M.Sugi https://doi.org/10.1016/S0040-6090(98)00659-2
  27. 10th Symposium on Future Electronic Devices Fractal time response of molecular assemblies and possible applications Saito,K.;M.Sugi
  28. IEICE Trans. Fund. v.E77/A Non-integer exponents in electronic circuits Ⅱ: Memory effects in the fractal immittance Sugi,M.;K.Saito
  29. J. Ind. Eng. Chem. v.9 Fractal memory function of biomolecular photodiode consisting of ferrocene/flavin/viologen/cytochrome c hetero-film Choi,J.W.;Y.S.Nam;K.S.Cho;W.H.Lee;S.Park;M.Fujihira https://doi.org/10.1021/ie50085a008
  30. J. Vac. Sci. Technol. B. v.18 Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers Roth,K.M.;N.Dontha;R.B.Dabke;D.T.Gryko;C.Clausen;J.S.Lindsey;D.F.Bocian;W.G.Kuhr https://doi.org/10.1116/1.1310657
  31. J. Org. Chem. v.65 Synthesis of "porphyrin-linker-thiol" molecules with diverse linkers for studies of molecular-based information storage Gryko,D.T.;C.Clausen;K.M.Roth;N.Dontha;D.F.Bocian;W.G.Kuhr;J.S.Lindsey https://doi.org/10.1021/jo000487u
  32. Langmuir v.18 Characterization of charge storage in redox-active self-assembled monolayers Roth,K.M.;J.S.Lindsey;D.F.Bocian;W.G.Kuhr https://doi.org/10.1021/la025525e
  33. J. Am. Chem. Soc. v.125 Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100) toward hybrid molecular/semiconductor information storage devices Roth,K.M.;A.A.Yasseri;Z.Liu;R.R.Dabke;V.Malinovskii;K.H.Schweikart;L.Yu;H.Tiznado;F.Zaera;J.S.Lindsey;W.G.Kuhr;D.F.Bocian https://doi.org/10.1021/ja021169a
  34. J. Phys. Chem. B. v.106 Comparison of electron-transfer and charge-retention characteristics of porphyrin-containing self-assembled monolayers designed for molecular information storage Roth,K.M.;D.T.Gryko;C.Clausen;J.Li;J.S.Lindsey;W.G.Kuhr;D.F.Bocian https://doi.org/10.1021/jp025850a
  35. Organic Lett. v.2 A self-assembled light-harvesting array of seven porphyrins in a wheel and spoke architecture Ambroise,A.;J.Li;L,Yu;J.S.Lindsey https://doi.org/10.1021/ol006036d
  36. Appl. Phys. Lett. v.81 Capacitance and conductance characterization of self-assembled ferrocene monolayers on silicon surfaces for memory applications Li,Q.G.;Mathur;M.Homsi;S.Surthi;V.Misra;V.Malinovskii;K.H.Schweikart;L.Yu;J.S.Lindsey;Z.Liu;R.B.Dabke;A.Yasseri;D.F.Bocian;W.G.Kuhr https://doi.org/10.1063/1.1500781
  37. Solid State Com. v.126 A light-emitting diode fabricated from horse-heart cytochrome c Tajima,H.;S.Ikeda;M.Matsuda;N.Hanasaki;J.W.Oh;H.Akiyama https://doi.org/10.1016/S0038-1098(03)00305-3
  38. J. Pathol. v.187 DNA chip technology Kurian,K.M.;C.J.Watson;A.M.Willye https://doi.org/10.1002/(SICI)1096-9896(199902)187:3<267::AID-PATH275>3.0.CO;2-#
  39. Langmuir v.18 Characteristics of DNA microarray fabricated on various aminosilane layers Oh,S.J.;S.J.Cho;C.O.Kim;J.W.Park https://doi.org/10.1021/la0113522
  40. Science v.291 DNA arrays Marshall,E.
  41. Nano Lett. v.4 Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors Hahm,J.I.;M.L.Charles https://doi.org/10.1021/nl034853b
  42. Nat. Biotechnol. v.20 A perspective on protein microarrays Mitchell,P. https://doi.org/10.1038/nbt0302-225
  43. Trends. Anal. Chem. v.19 Self-assembled monolayers: A versatile tool for the formation of bio-surfaces Ferretti,S.;S.Paynter;D.A.Russel;K.E.Sapsford;D.J.Richardson https://doi.org/10.1016/S0165-9936(00)00032-7
  44. Biosens. Bioelectron. v.18 Immunosensor for detection of Legionella pneumophila using surface plasmon resonance Oh,B.K.;Y.K.Kim;W.Lee;Y.M.Bae;W.H.Lee;J.W.Choi https://doi.org/10.1016/S0956-5663(03)00032-0
  45. Proc. Natl. Acad. Sci. USA v.98 Monolayers of derivatized poly(L-lysine)-grafted poly(ethylene glycol) on metal oxides as a class of biomolecular interfaces Ruiz-Taylor,L.A.;T.L.Martin;F.G.Zaugg;K.Witte;P.Indermuhl;S.Nock;P.Wagner https://doi.org/10.1073/pnas.98.3.852
  46. Anal. Chem. v.68 A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance Sigal,G.B.;C.Bamdad;A.Barberis;J.Strominger;G.M.Whitesides https://doi.org/10.1021/ac9504023
  47. Chem. Biol. v.8 Protein microarrays: Prospects and problems Kodadek,T. https://doi.org/10.1016/S1074-5521(00)90067-X
  48. Trends Biotechnol. v.20 Protein microarray technology Templin,M.F.;D.Stoll;M.Schrenk;P.C.Traub;ChF.Vohringer;T.O.Joos https://doi.org/10.1016/S0167-7799(01)01910-2
  49. Curr. Opin. Biotechnol. v.12 Protein biochips for differential profiling Fung,E.T.;V.Thulasiraman;S.R.Weinberger;E.A.Dalmasso https://doi.org/10.1016/S0958-1669(00)00167-1
  50. Clin. Chim. Acta v.307 Microchips, microarrays, biochips and nanochips: Personal laboratories for the 21st century Kricka,L.J. https://doi.org/10.1016/S0009-8981(01)00451-X
  51. Biosens. Bioelectron. v.17 PDMS device for patterned application of microfluids to neuronal cells arranged by microcontact printing Pierre,T.;L.Lars;W.Knoll;A.Offenhausser https://doi.org/10.1016/S0956-5663(01)00279-2
  52. Appl. Phys. Lett. v.81 Realization of hollow SiO2 micronozzles for electrical measurements on living cells Lehnert,T.;M.Gijs;R.Netzer;U.Bischoff https://doi.org/10.1063/1.1528292
  53. Biosens. Bioelectron. v.17 Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells Kathryn,G.;J.Klemic;F.Klemic;M.A.Reed;F.J.Sigworth https://doi.org/10.1016/S0956-5663(02)00015-5
  54. Sens. Actuators A v.105 Instananeous quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices Huang,Y.;N.S.Sekhon;J.Borninski;N.Chen;B.Rubinsky https://doi.org/10.1016/S0924-4247(03)00084-0
  55. Biomed. Microdevices v.2 Streamlining the drug discovery process by integrating miniaturization, high throughput screening, high content screening, and automation on the $CellChip^{TM}$ system Kapur,R.;K.Giuliano;M.Campana;T.Adams;K.Olson;D.Jung;M.Mrksich;C.Vasudevan;L.Taylor https://doi.org/10.1023/A:1009993519771
  56. Nature v.411 Microarrays of cells expressing defined cDNAs Zizuddin,J.;D.M.Sabatini https://doi.org/10.1038/35075114
  57. Trends Cell Biol. v.12 Cell biological applications of transfected cell microarrays Randy,Z.;S.N.Bailey;D.M.Sabatini https://doi.org/10.1016/S0962-8924(02)02354-1
  58. Am. J. Pathol. v.161 Development of a frozen cell array as a high-throughput approach for cell-based analysis Stephan,J.P.;S.Schanz;A.Wong;P.Schow;W.Lee;T.Wong https://doi.org/10.1016/S0002-9440(10)64238-1