• Title/Summary/Keyword: nanobiotechnology

Search Result 57, Processing Time 0.023 seconds

Nanobiotechnology, Today and Tomorrow (나노바이오공학의 오늘과 내일)

  • Lee, Chang-Soo;Park, Hyun-Kyu;Kim, Moon-Il
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.223-231
    • /
    • 2006
  • Nanobiotechnology, the interdisciplinary area at the crossroad of biotechnology and nanoscience, combines contributions from molecular and cell biology, chemisty, material science, and physics in an attempt to understand the behavior of nanobiomaterials, their development and applications. At present, nanobiotechnology is believed to hold great promise for improving health and prolonging life, faciliating biomarker discovery, molecular diagnostics, discovery of novel drugs and drug delivery, which are important basic components of biomedical science. In the recent trend of nanobiotechnology, this review is intended to provide a better understanding of nanobiotechnology in its applications and perspectives, separating this integration technology into three parts such as nanobiochip/sensor, nanobiomaterials, and nanobioanalysis in order to hopefully gain insights into why size matters, how nano-materials and -devices can be engineered.

Enhancing the Hexavalent Chromium Bioremediation Potential of Acinetobacter junii VITSUKMW2 Using Statistical Design Experiments

  • Pulimi, Mrudula;Jamwal, Subika;Samuel, Jastin;Chandrasekaran, Natarajan;Mukherjee, Amitava
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1767-1775
    • /
    • 2012
  • The Cr(VI) removal capability of Acinetobacter junii VITSUKMW2 isolated from the Sukinda chromite mine site was evaluated and enhanced using statistical design techniques. The removal capacity was evaluated at different pH values (5-11) and temperatures ($30-40^{\circ}C$) and with various carbon and nitrogen sources. Plackett-Burman design was used to select the operational parameters for bioremediation of Cr(VI). Three parameters (molasses, yeast extract, and Cr(VI) concentration) were chosen for further optimization using central composite design. The optimal combination of parameters was found to be 14.85 g/l molasses, 4.72 g/l yeast extract, and 54 mg/l initial Cr(VI), with 99.95% removal of Cr(VI) in 12 h. A. junii VITSUKMW2 was shown to have significant potential for removal of Cr(VI).

Nanobiotechnology (나노바이오 테크놀로지)

  • Park, Hyun Kyu;Chung, Bong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.10-15
    • /
    • 2006
  • Nanobiotechnology has attracted increasing interest during the last 10 years. Particularly in the fields of medicine, drug discovery, and pharmacology, this area of research has opened up new perspectives in analytics and therapy. Nanobiotechnolgy is a typical interdisciplinary field of research, and is based on the cooperative work of biologists, chemists, physicists, engineers, and medical doctors. This review article describes recent research and development of nanobiotechnology including nanobioanalysis, nanobiochip/sensor and nanobiomaterials.

Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration

  • Esfandian, Fatemeh;Peyravi, Majid;Qoreyshi, Ali Asqar;Jahanshahi, Mohsen
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.155-173
    • /
    • 2016
  • The present work has been focused on the development of polysulfone (PSf) ultrafiltration membrane via blending by sulfonated polyethersulfone (SPES) in order to permeability enhancement for ultrafiltration of cheese whey. In this regards, sulfonation of polyethersulfone was carried out and the degree of sulfonation was estimated. The effect of blend ratio on morphology, porosity, permeation and fouling of PSf / SPES membranes was investigated. Filtration experiments of whey were conducted for separation of macromolecules and proteins from the lactose enrichment phase. The morphology and performance of membranes were evaluated using different techniques such SEM, AFM, and contact angle measurements. The contact angle measurement showed that the hydrophilicity of membrane was increased by adding SPES. According to AFM images, PSf / SPES membranes exhibited lower roughness compared to neat PSf membrane. The water and whey flux of these membranes were higher than neat membrane. However, flux was decreased when the PSf / SPES blend ratio was 0/100. It can be attributed to pore size and morphology changes. Further, fouling parameters of PSf membrane were improved after blending. The blend membranes show a great potential to be used practically in proteins separation from cheese whey.

A Reusable Pb2+ Detecting Aptasensor Employing a Gold Nanorod-DNAzyme Conjugate

  • Lee, Jayeon;Ha, Tai Hwan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.190-195
    • /
    • 2015
  • Here, we demonstrated a $Pb^{2+}$ detecting aptasensor using $Pb^{2+}$-sensitive DNAzyme-conjugated gold nanorods (GNRs). Fluorescent DNA substrates that were initially quenched by GNRs, are released in response to $Pb^{2+}$ ions to give a substantial fluorescence signal. The GNR-tethered DNAzyme is reusable at least three times with a LOD of 50 nM.

Biological green synthesis of gold and silver nanoparticles

  • Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.135-145
    • /
    • 2014
  • Nanomaterials synthesized by natural bioresources such as microorganisms, animals and plants in nature can also be synthesized in laboratories even on large scale. This is considered as an attractive prospect for eco-friendly or so-called green synthesis. Development of eco-friendly synthesis of biocompatible nanoparticles and their potential biomedical applications introduces the concept of nanobiotechnology. The lower cost and lesser side effects as compare to chemical methods of synthesis are the main advantages of biosynthesis. This review article demonstrates the role of various biological resources e.g. bacteria, fungi, actinomycetes, plant leaves, fruits and honey as well as animal tissues for the synthesis of nanoparticles mainly gold and silver with an overview of their potential applications.

Preparation, Characterization and Cytotoxicity of Silibinin-Containing Nanoniosomes in T47D Human Breast Carcinoma Cells

  • Amiri, Boshra;Ebrahimi-Far, Meysam;Saffari, Zahra;Akbarzadeh, Azim;Soleimani, Esmaeil;Chiani, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3835-3838
    • /
    • 2016
  • Background: Breast cancer is one of the most frequent cancer types within female populations. Silibinin is a chemotherapeutic agent ative against cancer. Niosomes are biodegradable, biocompatible, safe and effective carriers for drug delivery. Objective:To prepare nanoniosomal silibinin and evaluate its cytotoxicity inthe T-47D breast cancer cell line. Materials and Methods: Niosomes were prepared by reverse phase evaporation of a mixture of span 20, silibinin, PEG-2000 and cholesterol in chloroform and methanol solvent (1:2 v/v). The solvent phase was evaporated using a rotary evaporator and the remaining gel phase was hydrated in phosphate buffer saline. Mean size, size distribution and zeta potential of niosomes were measured with a Zetasizer instrument and then nanoparticles underwent scanning electron microscopy. The drug releasing pattern was evaluated by dialysis and the cytotoxicity of nanoniosomes in T-47D cells was assessed by MTT assay. Results: Particle size, size variation and zeta potential of the niosomal nanoparticles were measured as $178.4{\pm}5.4nm$, $0.38{\pm}0.09$ and $-15.3{\pm}1.3mV$, respectively. The amount of encapsulated drug and the level of drug loading were determined $98.6{\pm}2.7%$ and $22.3{\pm}1.8%$, respectively; released drug was estimated about $18.6{\pm}2.5%$ after 37 hours. The cytotoxic effects of nanoniosome were significantly increased when compared with the free drug. Conclusions: This study finding suggests that silibinin nanoniosomes could serve as a new drug formulation for breast cancer therapy.