DOI QR코드

DOI QR Code

Highly Selective Derivative Spectrophotometry for Determination of Nickel Using 1-(2-Pyridylazo)-2-naphthol in Tween 80 Micellar Solutions

  • Eskandari, Habibollah (Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardebili)
  • Published : 2004.08.20

Abstract

A spectrophotometric and first derivative spectrophotometric method was developed in aquatic Tween 80 micellar solutions for selective determination of nickel without using any pre-separation step. 1-(2-Pyridylazo)-2-naphthol (PAN), as a sensitive chromogenic complexing agent formed a red-colored Ni(II)-PAN complex in Tween 80 media with satisfactory solubility and stability. Conditions such as pH, PAN concentration, type and concentration of micellizing agent were optimized. Molar absorptivity of Ni-PAN complex was found $4.62\;{\times}\;10^4L\;cm^{?1}\;mol^{?1}$ at 569 nm, under the optimum condition. Calibration graphs were derived by zero, first and second derivative spectrophotometry at maximum wavelengths of 569, 578 and 571 nm with linear ranges of 30-1800, 20-2500 and 30-2000 ng $mL^{?1}$ , respectively. Precision as standard deviation as well as accuracy as recovery percent were in the range of 1-20 ng $mL^{?1}$, and 93.3-103.3%, respectively, for the entire of the linear ranges. Spectrophotometric detection limit was 3 ng $mL^{?1}$ and effects of diverse ions on the first derivative determination of nickel were studied to investigate selectivity of the method. Interferences of cobalt and copper on the nickel determination were prevented using o-phenanthroline as masking agent. The recommended procedures were applied to the various synthetic and stainless steel alloys, tea leaves and human hair, with satisfactory results.

Keywords

References

  1. Cammack, R.; vanVlient, P. V.; Reedijk, J.; Bouwman, E.Bioinorganic Catalysis; Marcel Dekker: New York, U. S. A.,1999; pp 231-233.
  2. Ermler, U.; Grabarse, W.; Shima, S.; Goubeaud, M.; Thauer, R. K.Curr. Op. Struct. Biol. 1998, 8, 749. https://doi.org/10.1016/S0959-440X(98)80095-X
  3. Dole, F.; Medina, M.; More, C.; Cammack, R.; Bertrand, P.;Guigliarelli, B. Biochemistry 1996, 35, 16399. https://doi.org/10.1021/bi961662x
  4. Andrews, R. K.; Blakeley, R. L.; Zerner, B.; Lancaster, J. R. TheBioinorganic Chemistry of Nickel; VCH Publishers: New York, U.S. A., 1988; pp 141-165.
  5. Telser, J. Struct. Bonding 1998, 91, 31. https://doi.org/10.1007/BFb0103374
  6. Ralston, C. Y.; Wang, H.; Ragsdale, S. W.; Kumar, M.; Spangler,N. J.; Ludden, P. W.; Gu, W.; Jones, R. M.; Patil, D. S.; Cramer, S.P. J. Am. Chem. Soc. 2000, 122, 10553. https://doi.org/10.1021/ja0009469
  7. Ragsdale, S. W.; Kumar, M. Chem. Rev. 1998, 96, 2515. https://doi.org/10.1021/cr950058+
  8. Youn, H.-D.; Kim, E.-H.; Roe, J.-H.; Kang, S.-O. Biochem. J.1996, 318, 889.
  9. Choudhury, S. B.; Lee, J.-W.; Davidson, G.; Yim, Y.-I.; Bose, K.;Sharma, M. L.; Kang, S.-O.; Cabelli, D. E.; Maroney, M. J.Biochemistry 1999, 38, 3744. https://doi.org/10.1021/bi982537j
  10. Sirko, A.; Brodzik, R. Acta Biochim. Pol. 2000, 47, 1189.
  11. Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements;Pergamon Press: Oxford, U. K., 1985; pp 1330-1331.
  12. Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 434, 325. https://doi.org/10.1016/S0003-2670(01)00849-2
  13. Kumar, M.; Rathore, D. P. S.; Singh, A. K. Talanta 2000, 51, 1187. https://doi.org/10.1016/S0039-9140(00)00295-2
  14. Ma, R.; Adams, F. Anal. Chim. Acta 1995, 317, 215. https://doi.org/10.1016/0003-2670(95)00391-6
  15. Tewari, P. K.; Singh, A. K. Analyst 1999, 124, 1847. https://doi.org/10.1039/a906479f
  16. Gonzalez, M.; Gallego, M.; Valcarcel, M. Talanta 1999, 48, 1051. https://doi.org/10.1016/S0039-9140(98)00317-8
  17. Zendelovska, D.; Pavlovska, G.; Cundeva, K.; Stafilov, T. Talanta2001, 54, 139. https://doi.org/10.1016/S0039-9140(00)00645-7
  18. Sandell, E. B. Colorimetric Determination of Traces of Metals, 3rdEd.; Interscience Publishers: New York, U. S. A., 1959.
  19. Ferreira, S. L. C.; Spinola Costa, A. C.; de Jesus, D. S. Talanta1996, 43, 1649. https://doi.org/10.1016/0039-9140(96)01919-4
  20. Sandell, E. B. Colorimetric Determination of Traces of Metals;Interscience Publishers: New York, U. S. A., 1959; pp 665-673.
  21. Lee, S. K.; Choi, H. S. Bull. Korean Chem. Soc. 2001, 22, 463.
  22. Eskandari, H.; Imanzadeh Karkaragh, G. Bull. Korean Chem. Soc.2003, 24, 1731. https://doi.org/10.5012/bkcs.2003.24.12.1731
  23. Fan, X. Z.; Zhu, C. H.; Zhang, G. F. Analyst 1998, 123, 109. https://doi.org/10.1039/a705268e
  24. Fan, X. Z.; Zhu, C. H. Microchem. J. 1998, 59, 284. https://doi.org/10.1006/mchj.1997.1546
  25. Hu, Q. F.; Yang, G. Y.; Tang, D. Y.; Yin, J. Y. Fenxi Huaxue 2002,30, 699.
  26. Zhao, S. L.; Xia, X. Q.; Ma, H. R.; Xi, H. J. Talanta 1994, 41,1353. https://doi.org/10.1016/0039-9140(94)E0024-L
  27. Ohshita, K.; Wada, H.; Nakagawa, G. Anal. Chim. Acta 1982, 140,291. https://doi.org/10.1016/S0003-2670(01)95475-3
  28. Hu, Q. F.; Yang, G. Y.; Huang, Z. J.; Yin, J. Y. Anal. Sci. 2003, 19,1449. https://doi.org/10.2116/analsci.19.1449

Cited by

  1. Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008 : A review vol.635, pp.1, 2009, https://doi.org/10.1016/j.aca.2008.12.039