DOI QR코드

DOI QR Code

Determination of Trace Amounts of Lead and Copper in Water Samples by Flame Atomic Absorption Spectrometry after Cloud Point Extraction

  • Published : 2004.08.20

Abstract

The need for highly reliable methods for the determination of trace metals is recognized in analytical chemistry and environmental science. A method based on the cloud-point extraction (CPE) technique for the trace analysis of Pb and Cu in water samples is described in this study. The analytes in the initial aqueous solution are complexed with pyrogallol, and 0.1%(w/v) Triton X-114 is added as surfactant. Following phase separation at $50^{\circ}C$, based on the cloud point of the mixture and dilution of the surfactant-rich phase with acidified methanolic solution, the enriched analytes are determined by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, the enrichment factors of Pb and Cu were found to be 72 and 85, respectively. Under optimum conditions, the preconcentration of 60 mL of samples in the presence of 0.1%(w/v) Triton X-114 permitted the detection of 0.4 ${\mu}gL^{?1}$ of Pb and 0.05 ${\mu}gL^{?1}$ of Cu. The proposed method was applied successfully to the determination of Pb and Cu in water samples.

Keywords

References

  1. Carasek, E.; Tonjes, J. W.; Scharf, M. Talanta 2002, 56, 185. https://doi.org/10.1016/S0039-9140(01)00556-2
  2. Nohut, S.; Karaböcek, S.; Güner, S.; Gok, Y. J. Phamaceut.Biomed. 1999, 20, 309. https://doi.org/10.1016/S0731-7085(99)00045-X
  3. Bakircioglu, Y.; Segade, S. R.; Yourd, E. R.; Tyson, J. F. Anal.Chim. Acta 2003, 485, 9. https://doi.org/10.1016/S0003-2670(03)00348-9
  4. Matoso, E.; Kubota, L. T.; Cadore, S. Talanta 2003, 60, 1105. https://doi.org/10.1016/S0039-9140(03)00215-7
  5. Luoma, S. N. Sci. Total Environ. 1983, 28, 1. https://doi.org/10.1016/S0048-9697(83)80004-7
  6. Parmeggiani, L. Encyclopaedia of Occupational Health andSafety, 3rd.; International Labor Organization: Geneva, 1983; Vol. 1.
  7. Forstner, U. Polution in the Aquatic Environment; Springer Verlag:Berlin, 1983.
  8. Manzoori, J. L.; Karim-Nezhad, G. Anal. Chim. Acta 2003, 484,155. https://doi.org/10.1016/S0003-2670(03)00343-X
  9. Manzoori, J. L.; Bavili-Tabrizi, A. Anal. Chim. Acta 2002, 470,215. https://doi.org/10.1016/S0003-2670(02)00765-1
  10. Esther Fernardez Laespada, M.; Peraz Pavon, J. L.; Cordero, B.M. Analyst 1993, 118, 209. https://doi.org/10.1039/an9931800209
  11. Shemirani, F.; Dehghan-Abkenar, Sh.; Mirroshandel, A. A.;Salavati Niasavi, M. S.; Rahnama Kozani, R. Anal. Sci. 2003, 19,1. https://doi.org/10.2116/analscix.19.x1
  12. Shemirani, F.; Dehghan-Abkenar, Sh.; Rahnama-Kozani, R.;Salavati Niasavi, M. S.; Mirroshandel, A. A. Can. J. Anal. Sci.Spectro. 2004, 49, 1.
  13. Paleologos, G. D. L.; Tzouwara-Karaynni, S. M.; Karayanis, M.T. Anal. Chim. Acta 2002, 458, 241. https://doi.org/10.1016/S0003-2670(01)01579-3
  14. Paleologos, E. K.; Stalikas, C. D.; Karayannis, M. I. Analyst 2001,126, 389. https://doi.org/10.1039/b009521b
  15. Silva, M. F.; Fernandez, L.; Olsina, R. A.; Stacchiola, D. Anal.Chim. Acta 1997, 342, 229. https://doi.org/10.1016/S0003-2670(96)00603-4
  16. Manzoori, J. L.; Bavili-Tabrizi, A. Microchem. J. 2002, 72, 1. https://doi.org/10.1016/S0026-265X(01)00113-8
  17. Mesquita da silva, M. A.; Azzolin Frescura, V. L.; Nome Aguilera,F. J.; Curtius, A. J. J. Anal. At. Spectrom. 1998, 13, 1369. https://doi.org/10.1039/a806309e
  18. Rosen, M. J. Surfactants and Interfacial Phenomena; Wiley: NewYork, 1987.
  19. Corti, M.; Minero, C.; Degiorgio, V. J. Phys. Chem. 1984, 88, 309. https://doi.org/10.1021/j150646a029
  20. Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 450, 215. https://doi.org/10.1016/S0003-2670(01)01367-8
  21. Kulichenko, S. A.; Doroschuk, V. O.; Lelyushok, S. O. Talanta2003, 59, 767. https://doi.org/10.1016/S0039-9140(02)00617-3
  22. Soylak, M.; Divriki, U.; Elci, L.; Dogan, M. Talanta 2002, 56,565. https://doi.org/10.1016/S0039-9140(01)00575-6
  23. Non-ionic Surfactant; Schick, M. J., Ed.; Marcel Dekker: NewYork, 1987.
  24. Dean, J. A.; Rains, T. C. Flame Emission and Atomic AbsorptionSpectrometry; Marcel Dekker: New York, 1975.
  25. Cerrato Oliveros, M. C.; Jimenez de Blas, O.; Perez Pavon, J. L.;Moreno cordero, B. J. Anal. At. Spectrom. 1998, 13, 547. https://doi.org/10.1039/a801635f

Cited by

  1. A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry vol.2012, pp.2090-8873, 2012, https://doi.org/10.1155/2012/713862
  2. Simultaneous pre-concentration of Pb and Sn in food samples and determination by atomic absorption spectrometry vol.236, pp.4, 2013, https://doi.org/10.1007/s00217-013-1929-6
  3. Removal of Copper(II) from a Concentrated Sulphate Medium by Cloud Point Extraction Using an N,N′-Bis(salicylaldehyde)Ethylenediimine Di-Schiff Base Chelating Ligand vol.17, pp.1, 2014, https://doi.org/10.1007/s11743-013-1501-1
  4. A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS pp.1436-5073, 2017, https://doi.org/10.1007/s00604-017-2384-z
  5. Experimental design for the optimization of coacervative extraction of brilliant green in water samples using anionic surfactant vol.8, pp.4, 2018, https://doi.org/10.1007/s13201-018-0757-z
  6. Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction vol.157, pp.3-4, 2007, https://doi.org/10.1007/s00604-006-0652-4
  7. Cloud point extraction for the determination of trace copper in water samples by flame atomic absorption spectrometry vol.162, pp.1-2, 2008, https://doi.org/10.1007/s00604-007-0904-y
  8. Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction vol.67, pp.5, 2004, https://doi.org/10.1016/j.talanta.2005.04.029
  9. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations vol.145, pp.3, 2007, https://doi.org/10.1016/j.jhazmat.2006.11.040
  10. Development of a cloud-point extraction method for copper and nickel determination in food samples vol.159, pp.2, 2004, https://doi.org/10.1016/j.jhazmat.2008.02.011
  11. Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview vol.394, pp.3, 2004, https://doi.org/10.1007/s00216-009-2660-9
  12. Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: A multivariate study vol.192, pp.3, 2011, https://doi.org/10.1016/j.jhazmat.2011.06.017
  13. A novel fluorescent sensor based on electrosynthesized benzene sulfonic acid‐doped polypyrrole for determination of Pb(II) and Cu(II) vol.34, pp.5, 2004, https://doi.org/10.1002/bio.3626
  14. Application of Ultrasound-assisted Cloud-point Extraction and Spectrophotometry for Preconcentration and Determination of Trace Amounts of Copper(II) in Beverages vol.74, pp.12, 2004, https://doi.org/10.1134/s1061934819120128
  15. Extraction of Lead through Functionalized Carbon Nanotubes and Estimation of the Measurement Uncertainty vol.53, pp.10, 2004, https://doi.org/10.1080/00032719.2020.1711521