DOI QR코드

DOI QR Code

GENERATION OF MAGNETIC FIELDS BY TEMPERATURE GRADIENTS

  • Published : 2004.12.01

Abstract

We showed that magnetic fields are generated in the plasma which have the temperature inhomogeneities. The mechanism is the same as the Weibel instability because the velocity distribution functions are at non-equilibrium and anisotropic under the temperature gradients. The growth timescale is much shorter than the dynamical time of structure formation. The coherence length of magnetic fields at the saturated time is much shorter than kpc scale and then, at nonlinear phase, become longer by inverse-cascade process. We report the application of our results to clusters of galaxies, not including hydrodynamic effects.

Keywords

References

  1. Birkinshaw, M. 1999, Phys. Rep., 310, 97 https://doi.org/10.1016/S0370-1573(98)00080-5
  2. Chapman, S. & Cowling, T. G. 1960, The Mathematical Theory of Nonuniform Gases (Cambridge: Cambridge Univ. Press)
  3. Fried, B. D. 1959, Phys. Fluids. 2, 337
  4. Gallev, A. A. & Natanzon, A. M. 1991, Physics of laser plasma Chap 13. (eds Rubenchik, A. & Witkowski, S., Amsterdam; Tokyo: North-Holland)
  5. Hattori, M. & Umetsu, K. 2000, ApJ, 533, 84 https://doi.org/10.1086/308644
  6. Hattori, M. & Okabe, N. ApJ, submitted
  7. Hu, W., Scott,D. & Silk, J. 1994, Phys. Rev. D, 49,648 https://doi.org/10.1103/PhysRevD.49.648
  8. Krall, A. & Trivelpiece, A. W. 1973, Principles of plasma physics (New York: McGraw-Hill)
  9. Lee, R & Lampe, M. 1973, Phy. Rev. Lett., 31, 1390 https://doi.org/10.1103/PhysRevLett.31.1390
  10. Liang, H., Hunstead, R. W., Birkinshaw, M. & Andreani, P., 2000, ApJ, 544, 686. https://doi.org/10.1086/317223
  11. Markevitch, M., Ponman, T. J., Nulsen, P. E. J., Bautz, M. W., Burke, D. J., David, L. P., Davis, D., Donnelly, R. H., Forman, W. R., Jones, C., Kaastra, J., Kellogg, K, Kim, D.-W., Kolodziejczak, J., Mazzotta, P., Pagliaro, A., Patel, S., Van Speybroeck, L., Vikhlinin, A., Vrtilek, J., Wise, M., & Zhao, P. 2000, ApJ, 541, 542 https://doi.org/10.1086/309470
  12. Medvedev, M., V. & Loeb, A., 1999, ApJ, 526, 697 https://doi.org/10.1086/308038
  13. Medvedev, M. V., Fiore, M., Fonseca, R., A., Silva, Luis, O. & Mori, W., B. astro-ph/0409382
  14. Medvedev, M., V., a talk in this conference
  15. Morse R L. & Nielson C. W. 1971, Phys. Fluids., 14, 830. https://doi.org/10.1063/1.1693518
  16. Okabe, N. & Hattori, 2003, ApJ, 599, 964 https://doi.org/10.1086/379309
  17. Okabe, N. & Hattori, Proceedings of The Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, Eds. T. Reiprich, J. Kempner, and N. Soker
  18. Okabe, N. & Hattori, M., ApJL,submitted
  19. Ramani, A. & Laval, G. 1978, Phys. Fluids., 21, 980 https://doi.org/10.1063/1.862342
  20. Sarazin, C. L. 1988, X-ray emission from the Clusters of Galaxies (Cambridge: Cambridge Univ. Press)
  21. Sentoku, Y., Mirna, K., Kojima, S., Ruhl, H., 2000, Phys. Plasma, 7, 689 https://doi.org/10.1063/1.873853
  22. Sentoku, Y., Mirna, K., Sheng, Z. M., Kaw, P., Nishihara, K. & Nishihara, K. 2002, Phys. Rev. E., 65, 046408
  23. Vikhlinin, A., Markevitch, M. & Murray, S. S. 2001b, ApJL, 549, L47 https://doi.org/10.1086/319126
  24. Weibel, E. S. 1959, Phys. Rev. Lett., 2, 83. https://doi.org/10.1103/PhysRevLett.2.83
  25. Wallace, J. M. & Epperlein, E. M. 1991, Phys. Fluids B, 3, 1579. https://doi.org/10.1063/1.859677