Removal Torque and Histometric Evaluations of Implants with Various Area of Hydroxyapatite Coating Placed in the Rabbit Tibia

토끼 경골에서 hydroxyapatite 코팅의 면적에 따른 임프란트의 뒤틀림 제거력과 조직계측학적 분석

  • Moon, Sang-Kwon (Dept. of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Cho, Kyoo-Sung (Dept. of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Brain Korea 21 Project for Medical Science, Yonsei University) ;
  • Ahn, Sae-Youn (Institute of Biomedical Engineering, Solco Biomedical Co., Ltd) ;
  • Lee, Hoon (Institute of Biomedical Engineering, Solco Biomedical Co., Ltd) ;
  • Kim, Han-Sun (Dept. of Biomedical Engineering, College of Health Sciences, Yonsei University) ;
  • Shim, June-Sung (Dept. of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Choi, Seong-Ho (Dept. of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Brain Korea 21 Project for Medical Science, Yonsei University)
  • 문상권 (연세대학교 치과대학 치주과학교실, 치주조직 재생연구소) ;
  • 조규성 (연세대학교 치과대학 치주과학교실, 치주조직 재생연구소, BK21 의과학 사업단) ;
  • 안세영 (솔고바이오메디칼 의공학연구소) ;
  • 이훈 (솔고바이오메디칼 의공학연구소) ;
  • 김한성 (연세대학교 보건과학대학 의공학부) ;
  • 심준성 (연세대학교 치과대학 보철과학교실) ;
  • 최성호 (연세대학교 치과대학 치주과학교실, 치주조직 재생연구소, BK21 의과학 사업단)
  • Published : 2003.12.31

Abstract

Background: This study presents a biomechanical and histometric comparison of bone response to implants with various area of hydroxyapatite(HA) coating. Methods: The implants were placed in the tibia of 10 rabbits weighing 2.5-3.5kg. The control group had a machined surface, the experimental group 1 had 50${\mu}m$ thick HA coated in a band form, and the experimental group 2 had 50${\mu}m$ thick HA coated on the entire surface. 8 weeks after implantation, the animals were sacrificed. Removal torque was measured and histologic preparation was also performed for histologic and histometric analysis. Bone to implant contact as well as percentage of bone area inside threads were measured. ANOVA post hoc, and t-test were used for statistical analysis with p-value p<0.05. Results: 1. The removal torques were 9.36${\pm}$5.64 Ncm, 48.40 ${\pm}$ 16.66 Ncm, and 82.37${\pm}$22.56 Ncm for the control, exp. 1, and exp. 2 group respectively. Statistically significant difference were found among all the groups(p<0.05). 2. Bone to implant contact in the cortical bone were 38.94${\pm}$10.9 %, 66.90${\pm}$14.1 %, 73.00${\pm}$19.4 %, in the marrow bone, 8.30${\pm}$5.4%, 14.59${\pm}$5.9%, 18.54${\pm}$11.8%, and in total, 22.40${\pm}$10.1%, 31,17${\pm}$7.5%, 41.41${\pm}$12.2% for the control, exp. 1, and exp. 2 group respectively . In the cortical bone, exp. 1, and exp. 2 group showed statistically significantly higher contact compared to control group. Total contact and in the marrow bone, only exp. 2 group showed statistically significantly higher contact compared to control group(p<0.05). In all the groups significantly higher contact were observed in the cortical bone compared to the marrow bone(p<0.05). 3. Percentage of bone area inside threads in the cortical bone were 55.68${\pm}$7.25%, 55.19${\pm}$13.19%, 57.04${\pm}$13.33%, in the marrow bone, 12.34${\pm}$14.61%, 17.56${\pm}$20.04%, 20.26${\pm}$12.83%, and in total, 30.30${\pm}$12.46%, 31.57 ${\pm}$15.15%, 34.25${\pm}$12.56% for the control, exp.1, and exp. 2 group respectively. There was no statistical difference among the groups. In all the groups significantly higher bone area were observed in the cortical bone compared to the marrow bone(p<0.05)

Keywords

References

  1. Branemark P-I, Breine U, Adell R, Hansson BO, Lindstrom J, Ohlsson A. Intraosseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3: 81-100, 1969 https://doi.org/10.3109/02844316909036699
  2. Branemark P-I. Introduction to osseointegration. In: Branemark P-I, Zarb GA, Albrektsson T (eds). Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence 11-76, 1985
  3. Zarb GA, Albrektsson T. Osseointegration: A requiem for the periodontal ligament? [guest editorial]. lnt J Periodontics Restorative Dent 11: 88-91, 1991.
  4. Pilliar RM, Weatherly GC. Developments in implant alloys. CRC Crit Rev Biocompatibility 1: 371-403, 1986
  5. Lautenschlager EP, Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 43: 245-253, 1993
  6. Ducheyne P. Titanium and calcium phosphate ceramic dental implants, surfaces, coatings and interfaces. J Oral Implantol 14: 325-340, 1988
  7. Donley TG, Gillette WB. Titanium endosseous implant? soft tissue interface: A literature review. J Periodontol 62: 153-160, 1991 https://doi.org/10.1902/jop.1991.62.2.153
  8. Parr GR, Gardner LK, Toth RW. Titanium: The mystery metal of implant dentistry. Dental materials aspects. J Prosthet Dent 54(3): 410-414, 1985 https://doi.org/10.1016/0022-3913(85)90562-1
  9. Kasemo B, Lausmaa J. Metal selection and surface characteristics. In: Branemark P-I, Zarb GA, Albrektsson T (eds). Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence 99-116, 1985
  10. Albrektsson T, Branemark P-I, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Acta Orthop Scand 52: 155-170, 1981 https://doi.org/10.3109/17453678108991776
  11. Baier RE, Meyer AE, Natiella JR, Carter JM. Surface properties determining bioadhesive outcome: Methods and results. J Biomed Mater Res 18: 337-355, 1984 https://doi.org/10.1002/jbm.820180404
  12. Wataha JC. Materials for endosseous dental implants. J Oral Rehabil 23: 79-90, 1996 https://doi.org/10.1111/j.1365-2842.1996.tb01214.x
  13. Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent 7: 315-322, 1998 https://doi.org/10.1097/00008505-199807040-00010
  14. Hench LL, Wilson J. Surface-active biomaterials. Science 226: 630-636, 1984 https://doi.org/10.1126/science.6093253
  15. Hayashi K, Uenoyama K, Matsuguchi N, Sugioka Y. Quantitative analysis on vivo tissue responses to titanium-oxide and hydroxyapatite-coated titanium alloy. J Biomed Mater Res 25: 515-523, 1991 https://doi.org/10.1002/jbm.820250408
  16. Johnson BW. HA-coated dental implants: Longterm consequences. J Calif Dent Assoc 20(6): 33-41, 1992
  17. Wheeler SL. Eight-year clinical retrospective study of titanium plasma-sprayed and hydorxya-patite-coated cylinder implants. Int J Oral Maxillofac Implants 11(3): 340-350, 1996
  18. Lozada JL, James RA, Boskovic M. HA-coated implants: Warranted or not? Compend Contin Educ Dent 14(suppl 15): 539-543, 1993
  19. Liao H, Fartash B, Li J. Stability of hydroxyapatite coatings in titanium oral implants (IMZ). 2 retrieved cases. Clin Oral Implants Res 8(1): 682-72, 1997
  20. 한경호: 성견의 치주질환 이환 발치와에 매식된 Hydroxyapatite 피개매식체 주위의 신생골 형성에 관한 연구. 박사학위 논문, 연세대학교 대학원, 서울, 1993
  21. Darimont GL, Cloots R, Heinen E, Seidel L, Legrand R. In vivo behavior of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials 23: 2569-2575, 2002 https://doi.org/10.1016/S0142-9612(01)00392-1
  22. Johansson C, Albrektsson T. Integration of screw implants in the rabbit. A 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 2: 69-75, 1987
  23. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torque for polished and rough titanium implants. Int J Oral Maxillofac Implants 3: 21-24, 1988
  24. Bolind P, Wennerberg A, Albrektsson T. Influence of external administration of epinephrine on bone regeneration. Int J Oral Maxillofac Implants 4: 285-287, 1989
  25. Tjellstrom A, Jacobsson M, Albrektsson T. Removal torque of osseointegrated craniofacial implants: A clinical study. Int J Oral Maxillofac Implants 3: 287-289, 1988
  26. Wennerberg A, Hallgren C, Johansson C, Danelli S, A histomorphometric evaluation of screw-shaped implants each placed with two surface roughness. Clin Oral Implants Res 9: 11-19, 1998 https://doi.org/10.1034/j.1600-0501.1998.090102.x
  27. Baier RE, Meyer AE, Implant surface preparation. Int J Oral Maxillofac Implants 3: 9-20, 1988
  28. Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 11: 38-45, 1996
  29. Sennerby L, Thomsen P, Ericson LE. A morphometric and biomechanical comparison of titanium implants inserted in rabbit cortical and cancellous bone. IntJ Oral Maxillofac lmplants 7: 62-71, 1992
  30. KA, Berndt CC, Iacono VJ. Variability of hydroxyapatite-coated dental implants. Int J Oral Maxillofac Implants 13: 601-610, 1998
  31. Tufekci E, Brantly WA, Mitchell JC, Mc Glumphy EA. Microstructure of plasma-sprayed hydroxyapatite-coated Ti-6Al-4V dental implants. Int J Oral Maxillofac Implants 12: 25-31, 1997
  32. DeGroot K, Geesink R, Klein CPAT, Serekian P. Plasma-sprayed coatings of hydroxyapatite. J Biomed Mater Res 21:1375-1381, 1987 https://doi.org/10.1002/jbm.820211203
  33. Gotfredsen K, Nimb L, Hjrting-Hansen E, Jansen JS, Holmen A. Histomorphometric and removal torque analysis of $TiO_2$-blasted titanium implants. An experimental study on dogs. Clin Oral Implants Res 3: 77-84, 1992 https://doi.org/10.1034/j.1600-0501.1992.030205.x
  34. Ericsson I, Johansson, CB, Bystedt H, Norton MR. A histomorphometric evaluation of bone-to-implant contact on machine-prepared and roughened titanium dental implants. A pilot study in the dog. Clin Oral Implants Res 5: 202-206, 1994 https://doi.org/10.1034/j.1600-0501.1994.050402.x
  35. Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofac Implants 12: 486-494, 1997
  36. Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 17: 15-22, 1996 https://doi.org/10.1016/0142-9612(96)80750-2
  37. Block MS, Finger IM, Fontenot MG, Kent JN. Loaded hydroxyapatite-coated and grit-blasted titanium implants in dogs. Int J Oral Maxillofac Implants 4(3): 219-225, 1989
  38. Iamoni F, Rasperini G, Trisi P, Massimo S. Histomorphometric analysis of a half hydroxyapatite-coated implant in humans: a pilot study. Int J Oral Maxillofac Implants 14: 729-735, 1999
  39. 김진숙: 성견 치주질환 발치와에 즉시임프란트 매식술시 Titanium Plasma Sprayed 임프란트와 Hydroxyapatite Coated 임프란트간의 계면조직에 관한 연구. 석사학위 논문, 연세대학교 대학원, 서울, 1993
  40. Cook SD et al. Interface mechanics and histology of titanium and hydroxyapatite coated titanium for dental application. Int J Oral Maxillofac Implants 2(1): 15-21, 1987
  41. Piattelli RM, Tristi P. Microscopic and chemical analysis of bone-hydroxyapatite interface in a human retrieved implant. A case report. J. Periodontol 64: 906-909, 1993 https://doi.org/10.1902/jop.1993.64.9.906
  42. 이정욱: 성견 치주질환 발치와에 즉시임프란트 매식술시 Titanium Plasma Sprayed 임프란트와 Hydroxyapatite Coated 임프란트간의 계면조직에 관한 주사현미경적 연구. 석사학위 논문, 연세대학교 대학원, 서울, 1993
  43. Kay JF. Bioactive surface coatings: Cause for encouragement and caution. J Oral Implantol 14: 43-54, 1988
  44. Ducheyne P, Healy KE. The effect of plasma sprayed calcium phosphate ceramic coatings on the metal ion release from porous titanium and cobalt-chromium alloys. J Biomed Mater Res 22:1137-1163, 1988 https://doi.org/10.1002/jbm.820221207
  45. Ji H, Ponton CB, Marquise PM. Microstructural characterization of hydroxylapatite coating on titanium. J Mater Sci: Mater Med 3:283-287, 1992 https://doi.org/10.1007/BF00705294
  46. Park E, Condrate RA, Hoelzer DT, Fishman GS. Interfacial characterization of plasma-spray coated calcium phosphate on Ti-6Al-4V. J Mater Sci: Mater Med 9:643-649, 1998 https://doi.org/10.1023/A:1008931508465
  47. VanDijk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials 17: 405-410, 1996 https://doi.org/10.1016/0142-9612(96)89656-6
  48. Liu X, Weng J, Tong W, Zuo C, Zhang X, Wang P, Liu Z. Characterization hydroxylapatite film with mixed interface by Ar ion beam enhanced deposition. Biomaterials 18: 1487-1493, 1997 https://doi.org/10.1016/S0142-9612(97)00085-9
  49. Brendel T, Engel A, Russel C. Hydroxylapatite coating by polymeric route. J Mater Sci: Mater Med 3:175-179, 1992 https://doi.org/10.1007/BF00713445
  50. Li T, Lee J, Kobayashi T, Aoki H. Hydroxylapatite coating by dipping method. J Mater Sci: Mater Med 7:355-357, 1996 https://doi.org/10.1007/BF00154548
  51. Russel SW, Luptak KA, Suchicital CTA, Alford TL, Pizzicano VB. Chemical and structural evaluation of sol-gel derived hydroxylapatite thin films under rapid thermal processing. J Am Ceram Soc 79:97-103, 1996 https://doi.org/10.1111/j.1151-2916.1996.tb07885.x
  52. Duchyne P, Reemdonck WV, Heughebaert JC, Heughebaert M. Structural analysis of hydroxlapatite coating on titanium. Biomaterials 7: 97-103, 1986 https://doi.org/10.1016/0142-9612(86)90063-3
  53. Kim CS, Ducheyne P. Compositional variations in the surface and interface of calcium phosphate ceramic coatings on Ti and Ti-6Al-4V due to sintering and immersion. Biomaterials 12: 461-469, 1991 https://doi.org/10.1016/0142-9612(91)90143-X
  54. Hero H, Wie H, Jorgensen RB, Ruyter IE. Hydroxylapatite coating on Ti by hot isostatic pressing. J Biomed Mater Res 28:154-156, 1994
  55. Ergun C, Doremus R, Lanford W. Hydroxyapatite and titanium: Interfacial reactions. J Biomed Mater Res 65A(3):336-343, 2003 https://doi.org/10.1002/jbm.a.10499
  56. Zheng X, Huang M, Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21: 841-849, 2000 https://doi.org/10.1016/S0142-9612(99)00255-0