• Title/Summary/Keyword: Hydroxyapatite coating

Search Result 97, Processing Time 0.03 seconds

Hydroxyapatite Formation on Fluoride Bioactive Glasses coated on Alumina (알루미나에 코팅된 불화물 생체유리에의 수산화 아파타이트 형성)

  • 안현수;이은성;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1087-1093
    • /
    • 1999
  • Bioglass which is one of the surface active bionmaterials has a good biocompatibility but a poor mechanical strength, In the present work therefore two types of fluoride-containing bioglasses were coated on an alumina to improve mechanical strength. Crystallization of the coating layer and the hydroxyapatite formation on the bioactive glass coatings in tris-buffer solution were studied. When bioactive glass coated alumina was heat-treated Na2CaSi3O8 crystal was formed on the layer at lower temperature while wollastonite(CaSIO3) was obtained at higher temperature. Hydroxyapatite forming rate on the coating layer with Na2CaSi3O8 crystal was delayed with SiO2 contents in glass composition. However the hydroxyapatite was developed in 20minutes regardless SiO2 contents when the coating layer crystallized into wollastonite. More amount of P3+ ions were leached out of the coating layer with wollastonite than that with Na2CaSi3O8 crystal while Na+ and Ca2+ ions were leached out more easily from the Na2CaSi3O8 crystal containing coating layer.

  • PDF

A study of hydroxyapatite coating on Ti-6Al-4V alloy with different surface treatments using a sol-gel derived precursor

  • Balakrishnan Avinash;Kim Yun-Jong;Lee Seung-Woo;Kim Taik-Nam
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.161-168
    • /
    • 2004
  • In the present study, a simple method was successfully used for hydroxyapatite coatings on Ti-6AL-4V substrates deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating the samples were micropolished (0.1 micron) and divided into three sets. The first set, were the micropolished samples kept as such. The second set were coated with titania sol and the third set was treated with 5M NaOH. After three repetitions of hydroxyapatite coating procedures on each set and heat treatment at $600^{\circ}C$, the formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The SEM studies revealed surface morphology. Hydroxyapatite, calcined at $600^{\circ}C$, displaying a porous structure arisen from heating of the bulk

  • PDF

Hydroxyapatite+TiO2 Composite Sol Coating on Cp-Ti (Cp-Ti 표면의 Hydroxyapatite+TiO2 복합 Sol 코팅에 관한 연구)

  • Kim, Yun-Jong;Kim, Taik-Nam;Lee, Sung-Ho
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.444-447
    • /
    • 2005
  • In this study, $Hydroxyapatite+TiO_2(HAp+TiO_2)$ composite sol coatings on Cp-Ti substrates were deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating, the samples were micropolished and divided into three sets. The first set was coated with hydroxyapatite (HAp) directly on Cp-Ti. The second set was first coated with intermediate titania layer and then coated with HAp. The third set samples were coated with $HAp+TiO_2$ (50:50) composite sol. Each samples were predried at $200^{\circ}C$, and heat treated at $600^{\circ}C$. The formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The NaOH treated samples showed the presence of rutile crystal. The SEM studies revealed surface morphologies of each samples. $HAp+TiO_2$ composite sol coating layer was found to be smooth. The bonding strength of each samples were calculated using pull out tests. The bonding strength of the $HAp+TiO_2$ composite sol coating on substrate was 29.35MPa.

A study of hydroxyapatite coating on Ti-6Al-4V dental implant alloy with different surface treatments using a sol-gel derived precursor (Sol-Gel 성형체에 의해 다르게 표면 처리된 치과 Implant용 Ti-6Al-4V합금의 Hydroxyapatite 코팅에 관한 연구)

  • Han, Sok-Yoon
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.139-144
    • /
    • 2004
  • In the present study, a simple method was successfully used for hydroxyapatite coatings on Ti-6Al-4V substrates deposited by using a sol-gel derived precursor. Prior to hydroxyapatite coating the samples were micropolished (0.1 micron) and divided into three sets. The first set,were the micropolished samples kept as such. The second set were coated with titania sol and the third set was treated with 5M NaOH. After three repetitions of hydroxyapatite coating procedures on each set and heat treatment at 600 $^{\circ}\Delta C$, the formation of hydroxyapatite has been confirmed by XRD analyses and the substrate material was found to be oxidized with negligible amount of CaO in the coating. The SEM studies revealed surface morphology. Hydroxyapatite, calcined at 600$^{\circ}\Delta C$, displaying a porous structure arisen from heating of the bulk. But, it is very meaningful in trying to approach morale management plans with an object of dental technicians. It is necessary that dental technicians should make efforts to control themselves.

  • PDF

Study on the Spraying Parameters of a Plasma-sprayed Hydroxyapatite Coating (플라즈마 용사법에 의한 Hydroxyapatite 코팅의 용사조건에 관한 연구)

  • 여인웅;안효석
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.444-450
    • /
    • 1999
  • Hydroxyapatite(HA) was spray-coated to alloy substrate(Ti-6Al-4V) using plasma-spray process for bioceramic application The coating morphology composition and crystallinity were influenced by following process parameters ; stand-off distance spray power level and auxiliary gas pressure. These parameters have been systematically varied in the present study to evaluate their relative influence on the coating qual-ity and to seek an optimum spraying condition. Amorphicity and decomposition of HA increased with stand-off distance and the imperfect coating layer was obtained at the short stant-off distance (55mm). The cry-stallinity of HA coating decreased with spray power level and auxiliary gas pressure but the bond strength between the HA coated layer and Ti alloy substrate increased with the spray power level.

  • PDF

Hydroxyapatite Coating on Ti Plate by a Dipping Method (침적법에 의한 수산화아파타이트 코팅 금속재의 기초적 연구)

  • Lee, Jun-Hui;Kim, Seok-Yeong;Kim, Yeong-Gon;Lee, In-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.217-222
    • /
    • 1997
  • Hydroxyapatite(HA)-coated metal composites were made by the dipping method. The specimen substrates were Ti plates with a thickness of 2 mm. The HA coating was carried out in HA-sol for 1 min by the dipping method. The concentration of HA-sol for the coating ranged from 3.28 to 9.99 wt%. Excellent coating was observed on Ti substrate dipped once in 9.99 wt% sol. Preparation of Ti plates by sandblasting provided the better environment for coating HA on Ti surface than non-treated surface. As the concentration of sol increased, the weight change and the coating thickness increased. Above 7 wt% sol, they increased sharply.

  • PDF

A study on the mechanical properties of TiN/DLC based functionally graded coatings

  • Song, Young-Sik;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.59-59
    • /
    • 2003
  • In recent, various functional coatings on artificial tooth implants have been conducted to enhance the bonding strength between implants and bones. Despite of these efforts, some previous reports argued that an adhesion strength between titanium implant and the final coatings like hydroxyapatite(HA) is weaker than the strength between coating and bone. In order to increase the adhesion force between the final coating and implant surface, TiN/DLC based functionally graded coating, which has higher mechanical strength than the titanium implant, was applied as a middle layer between titanium implant and final coating. Particularly we finally coated a biocompatible hydroxyapatite film on the DLC layer and examined the mechanical properties. As a result, TiN/DLC based functionally graded coating showed the higher adhesion strength compared with hydroxyapatite single layer coating on the titanium implant.

  • PDF

The Mechanical Properties and Biocompatibility of Functionally Graded Coatings(FGC) of Hydroxyapatite(HA) and Metallic Powders - Functionally Gradient Coatings of Thermal Spray in Air- (Hydroxyapatite (HA)와 금속 분말 경사 코팅의 기계적 특성 및 생체 적합성 - 대기 열용사 경사코팅 -)

  • Kim, Eun-Hye;Kim, Yu-Chan;Han, Seung-hee;Yang, Seok-Jo;Park, Jin-Woo;Seok, Hyun-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • This work presents functionally graded coatings (FGC) of hydroxyapatite (HA) and metallic powders on Ti-6Al-4V implants using plasma spray coating method. HA has been the most frequently used coating material due to its excellent compatibility with human bones. However, because of the abrupt changes in thermomechanical properties between HA and the metallic implant across an interface, and residual stress induced on cooling from coating temperture to room temperature, debonding at the interface occurs in use sometimes. In this work, FGC of HA and Ti or Ti-alloy powders is made to mitigate the abrupt property changes at the interface and the effect of FGC on residual stress release is investigated by evaluating the mechanical bond strength between the implant and the HA coating layers. Thermal annealing is done after coating in order to crystallize the HA coating layer which tends to have amorphous structure during thermal spray coating. The effects of types and compositional ratio of metallic powders in FGC and annealing conditions on the bond strength are also evaluated by strength tests and the microstructure analysis of coating layers and interfaces. Finally, biocompatibility of the coating layers are tested under ISO 10993-5.

Fabrication of Hydroxyapatite-coated Zirconia by Room Temperature Spray Process and Microstructural Change by Heat-treatment (상온 분사법에 의한 수산화아파타이트 코팅 지르코니아의 제조 및 미세구조에 미치는 열처리 효과)

  • Lee, Jong Kook;Eum, Sangcheol;Kim, Jaehong;Jang, Woo Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Hydroxyapatite coatings were fabricated by a room temperature spray method on zirconia substrates and the influence of heat-treatment on their microstructure was also investigated. Phase composition of coated hydroxyapatite films was similar to the starting powder, but the grain size of hydroxyapatite particles was reduced to the size of nano-scale about 100 nm. Grain size, particle compactness, and adhesiveness to zirconia of hydroxyapatite coatings were increased with heat-treatment temperature, but some of cracks by heat-treatment above $1100^{\circ}C$ were initiated between hydroxyapatite coatings and zirconia substrate. Heat-treated hydroxyapatite layers show the dissolution in SBF solution for 5 days. Hydroxyapatite-coated specimen heat-treated at $1100^{\circ}C$ for 1 h has a good biocompatibility, which specimen induced the nanocrystalline hydroxyapatite precipitates on the coating surface by the immersion in SBF solution for 5 days.