DOI QR코드

DOI QR Code

Distribution of Alcohol-tolerant Microfungi in Paddy Field Soils

  • Choi, Soon-Young (Department of Biological Science, College of Science, Sookmyung Women's University)
  • Published : 2003.12.31

Abstract

Ethanol treatment method was attempted for the selective isolation of ethanol-tolerant fungi from two sites of rice paddy fields around Seoul area. The vertical and seasonal fluctuation of the fungal population were also investigated. The ethanol-tolerant fungi were Talaromyces stipitatus, T. flavus var. flavus, T. helicus var. major, Eupenicillium javanicum, Emericellopsis terricolor, Pseudourotium zonatum, Aspergillus flavus, Cladosporium cladosporioides, Penicillium frequentans, P. janthinellum, and P. verruculosum. The most dominant species isolated by this method was T. stipitatus. It was found that the numbers of fungal species and colony forming units(CFUs) of ethanol-tolerant fungi were higher in Ascomycota than in Deuteromycota. A particular tendency appeared the highest CFUs in autumn, but lower in spring and winter. T. stipitatus was the dominant species of ethanol tolerant microfungi. This result would suggest that membrane lipid composition of ethanol-tolerant fungi isolated from the soils may play on important role in the ethanol tolerance.

Keywords

References

  1. Alexandre, H., Rousseaux, I. and Charpentier, C. 1994. Ethanol adaptation mechanism in Saccharomyces cerevisiae. Biotech. Appl. Biochem. 20: 173-183
  2. Apinis, A. E. 1963. Occurrence of thermophilous microfungi in certain alluvial soils near Nottingham. Nova Hedwigia 5(2): 57-78
  3. Augustin, H. W., Kopperschlager, G., Steffen, H. and Hofmann, E. 1965. Hexokinase as limiting factor of anaerobic glucose consumption of Saccharomyces carlsbergensis NCYC74. Biochim. Biophys. Acta 110: 437-439
  4. Beaven, M. J., Charpentier, C. and Rose, A. H. 1982. Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC. J. Gen. Microbiol. 128: 1447-1455
  5. Chi, Z. and Arneborg, N. 1999. Relationship between lipid composition, frequence of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J. Applied. Microbiol. 86: 1047-1052 https://doi.org/10.1046/j.1365-2672.1999.00793.x
  6. Dutta, B. G., Ghosh, G. R., Orr, G. F. and Kuehn, H. H. 1964. Soil fungi from Orissa (India). Mycologia 56: 153-157 https://doi.org/10.2307/3756531
  7. Furuya, K. and Naito, A. 1979. An effective method for isolation of Ascodesmis from soil. Trans. Mycol. Soc. Japan 20: 171-175
  8. Ghareib, M., Youssef, K. A. and Khalil, A. A. 1988. Ethanol tolerance of Saccharomyces cerevisiae and its relation to lipid content and composition. Folia Microbiol. 33: 447-452 https://doi.org/10.1007/BF02925769
  9. Ibeas, J. I. and Jimenez, J. 1997. Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl. Envrion. Microbiol. 63: 7-12
  10. Ingram, L. O. 1976. Adaptation of membrane lipids to alcohols. J. Bacteriol. 125: 670-678
  11. Ito, T., Ueda, M. and Yokoyama, T. 1981. Thermophilic and thermotolerant fungi in paddy field soils. IFO Res. Comm. 10: 20-32
  12. Min, K. H., Ito, T. and Yokoyama, T. 1981. Fungus flora of paddy fields in Korea. I. Fungal distribution of paddy fields. Kor. J. Microbiol. 19: 153-162
  13. Min, K. H., Ito, T. and Yokoyama, T. 1987. Fungus flora of paddy fields in Korea. . Filamentous fungi isolated by heat treatment. Kor. J. Microbiol. 15: 187-195
  14. Mishra, P. and Kaur, S. 1991. Lipids as modulators of ethanol tolerance yeast. Appl. Microbiol. Biotech. 34: 697-702
  15. Mishra, P. and Prasad, R. 1988. Role of phospholipid head groups in ethanol tolerance of Saccharomyces cerevisiae. Jour. Gen. Microbiol. 134: 3205-3211
  16. Mishra, P. and Prasad, R. 1989. Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 30: 294-298
  17. Russell, N. J. 1989. Functions of lipids: Structural roles and membrane functions. In Microbial Lipids, Vol. 2 ed. Ratledge, C. and Wilkinson, S. G. pp. 279-365
  18. Tokumasu, S. 1974. A study of evaluation of methods for the isolation of soil fungi. Trans. Mycol. Soc. Japan. 15: 135-146
  19. Sajbidor, J. 1997. Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotech. 17: 87-103 https://doi.org/10.3109/07388559709146608
  20. Swan, T. M. and Watson, K. 1999. Stress tolerance in yeast lipid mutants; membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Can. J. Microbiol. 45: 472-479 https://doi.org/10.1139/cjm-45-6-472

Cited by

  1. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil vol.18, pp.9, 2015, https://doi.org/10.1111/1462-2920.12815
  2. Bacterial communities involved directly or indirectly in the anaerobic degradation of cellulose pp.1432-0789, 2019, https://doi.org/10.1007/s00374-019-01342-1