DOI QR코드

DOI QR Code

Springback Control in the Forming Processes for High-Strength Steel Sheets

고강도 강판 성형 공정의 스프링백 제어

  • 양우열 (한양대학교 대학원) ;
  • 이승열 (한양대학교 CPRC) ;
  • 금영탁 (한양대학교 기계공학부) ;
  • 황진영 (현대자동차 금속재료연구팀) ;
  • 윤치상 (현대자동차 금속재료연구팀) ;
  • 신철수 (현대자동차 금속재료연구팀) ;
  • 조원석 (현대자동차 금속재료연구팀)
  • Published : 2003.12.01

Abstract

Tn order to develop springback control technology for high-strength steel sheets, several studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next, the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to evaluate the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type. high-strength sheet panels.

Keywords

References

  1. Yoshihiro Tomita and Takeshi Iwamoto, 1995, "Constitutive modeling of trip steel and its application to the improvement of mechanical properties", Int. J. Mech. Sci. Vol. 37, No. 12, pp. 1295-1305. https://doi.org/10.1016/0020-7403(95)00039-Z
  2. He, N. and Wagoner, R. H., 1996, "Springback simulation in sheet metal forming", NUMISHEET '96, pp. 308-315.
  3. Leu, Daw-Kwei, 1997, "A simplified approach for evaluation bendability and springback in plastic bending of anisotropic sheet metals", Journal of Materials Processing Technology. Vol. 66, pp. 9-177. https://doi.org/10.1016/S0924-0136(96)02453-3
  4. Samuel, M., 2000, "Experimental and numerical prediction of springback and side wall curl in Ubendings of isotropic sheet metals", Journal of Materials Processing Technology. Vol. 1.5, pp. 382-393.
  5. Hazek, V. V. and Lange, K., 1990, "Use of Slip Line Field Method in Deep Drawing of Large Iirregular Shaped Components", Proc. of 7th NAMRC, Ann Arbor, Michigan, pp. 65-71.
  6. Chu, J. Y. and Dou, A. P., 1990, "A Software System for Designing Reasonable Blank for Boxshaped Deep-drawn Articles", Proc. of ICTP, Vol.3, pp. 1319-1324.
  7. 이진희, 강범수, 김병민, 1995, "강-소성 유한요소 해석에서의 3 차원 역추적 기법에 관한 연 구", 한국소성가공학회지, 제 4 권, 제 3 호.
  8. Barlat, F., Chung, K. and Richmond, O., 1994, "Anisotropic Plastic Potentials for Polycrystals and Application to the Design of Optimum Blank Shapes in Sheet Forming", Metallurgical and Materials Transactions A, Vol25A, pp. 1209-1216.
  9. 김세호, 허 훈, 2002, "직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화-설계민감도 해석", 대한기계학회 논문집 A, Vol. 26, No. 11, pp. 2245-2252. https://doi.org/10.3795/KSME-A.2002.26.11.2245
  10. 김세호, 허 훈, 2002, "직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화-공전변수 최적화", 대한기계학회 논문집 A, Vol. 26, No. 11, pp. 2262-2269. https://doi.org/10.3795/KSME-A.2002.26.11.2262
  11. Lee, C. H. and Huh, H., 1997, "Blank Design and Strain Prediction of Automobiles Stamping Parts by an Inverse Finite Element Approach", J. Mat. Proc. Tech. Vol. 63, pp. 645-650. https://doi.org/10.1016/S0924-0136(96)02700-8
  12. Iseki, H. and Sowerby, R., 1995, "Determination of the Optimum Blank Shape when Deep Drawing Non-axisymmetric Cups Using a Finite Element Method", JSME International Journal. Series A, Vol. 38, No 4, pp. 125-135.
  13. Kim, J. Y., Kim, N. S. and Huh, M. S., 1998, "Optimum Blank Design of Automobile Sub-Frame", Korean Society for Technology of Plasticity Spring Annual Meeting. pp. 185-195.
  14. 심현보, 손기찬, 황현태, 2000, "민감도법을 이용한 최적블랭크 설계법의 일반적인 모양의 금형에서 적용", 한국소성가공학회지, 제 9 권, 제 3 호.
  15. 양우열, 이승열, 금영탁, 2002, "스프링백 저감을 위한 초기블랭크 설계", 한국자동차공학회지, 추계학술대회 초록집, p. 509.
  16. 양우열, 이승열, 금영탁, 2003, "스프링백 저감을 위한 초기블랭크 설계", 한국소성가공학회지, 제 12 권, 제 3 호, pp. 208-213. https://doi.org/10.5228/KSPP.2003.12.3.208

Cited by

  1. A Study on the Springback of High-Strength TRIP Steel vol.13, pp.5, 2004, https://doi.org/10.5228/KSPP.2004.13.5.409
  2. Bead Optimization to Reduce Springback of Sheet Metal Forming using High Strength Steel vol.23, pp.4, 2014, https://doi.org/10.7735/ksmte.2014.23.4.350