DOI QR코드

DOI QR Code

Development of Finite Element Program for Analyzing Springback Phenomena of Non-Isothermal Forming Processes for Aluminum Alloy Sheets (Part2 : Theory & Analysis)

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석)

  • ;
  • ;
  • R.H. Wagoner (MSE, OSU)
  • 금영탁 (한양대학교 기계공학부) ;
  • 한병엽 (한양대학교 일반 대학원 정밀기계공학과) ;
  • Published : 2003.12.01

Abstract

The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures for the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

Keywords

References

  1. F.Pourboghrat and E. Chu, 1997, "Prediction of springback and sidewall curl in 2D-draw bending", Journal of Materials Processing Technology, Vol 50, Issues 1-4, March 1995, pp. 361-374. https://doi.org/10.1016/0924-0136(94)01398-K
  2. Jong-Whan Yoon, Farhang Pourboghrat, Kwansoo Chung, Dong-Yol Yang, 2002, "Springback predicti-on for sheet metal forming process using a 3D hybrid membrane/shell method", International Jour-nal of Mechanical Sciences 44, pp. 2133-2153. https://doi.org/10.1016/S0020-7403(02)00165-0
  3. Y.H. Moon, S.S. Kang, J.R. Cho, T.G. Kim, 2003, "Effect of tool temperature on the reduction of the springback of aluminum sheets", Materials Processing Technology 132, pp. 365-368. https://doi.org/10.1016/S0924-0136(02)00925-1
  4. 김용환, R. H. Wagoner, 0990, "비등온 박판 성형 공정의 유한요소 해석", 대한기계학회논문집 제 14 권 제 5 호, pp. 1119-1128.
  5. 양동열, 이상욱, 윤정환, 유동진, 1999, "박판 성형에서의 스프링백 해석과 산업적 응용", 한국소성가공학회지 제 8 권 제 1 호, pp. 22-28.
  6. 정완진, 1999, "박판 성형시 탄성복원에 대한 유한요소 해석" 대한 기계학회 논문집 A 권, 제 23 권 제 12 호, pp. 2197-2208.
  7. Barlat, F., Lege, D. J., Berm, J. C. and Warren, C. J., 1991, "Constitutive Behavior ofr Anisotropic Material and Application to a 209 Al-Li Alloy", Modeling the Deformation of Crystalline Solids Edited by T.C. Lowe, A.D. Rollett, P.S. Follansbee and G.S. Daehn, The Minerals, Metals & Materials Society, pp. 189-203.
  8. Y.T.Keum and K.B.Lee, 2000, "Sectional finite el ement analysis of forming processes for laumin um-alloy sheet metals", Int. J. Mech. Sci, Vol. 42, No. 10, pp. 1911-1933. https://doi.org/10.1016/S0020-7403(99)00074-0
  9. Y.T.Keum and B.Y.Ghoo, 2002, "Anisotropy at high temperatures", Journal of Ceramic Processing Rese-arch, Vol. 3, No. 3, pp. 178-181.
  10. P. Jetteur and F. Frey, 1986, "A four node Marguerre element for non-linear shell analysis", Eng. Comp., v3, pp. 276-282. https://doi.org/10.1108/eb023667
  11. Kaping Li, 1995, "Contribution to the finite element simulation of three-dimensional sheet metal forming", Ph.D thesis, MSM, Universite de Liege, Belgique.
  12. M.A. Crisfield, 1997, "Non-linear finite elemet analysis of solids and structures. Volume 2", John wiley & sons.
  13. 서대교, 1999, "금형의 온도와 처리 상태에 따 른 판재의 마찰특성", 한국소성가공학회지 제 8 권 제 3 호, pp. 245-251.
  14. 금영탁, 유동열, 한병엽, 2003, "알루미늄 합금 박판 비등온 성형공정 스프링백 해석용 유한 요소 프로그램 개발 (1 부 : 실험)", 한국소성가공학회지, 제 12 권 제 3 호, pp. 202-207. https://doi.org/10.5228/KSPP.2003.12.3.202
  15. 이명섭, 황종관, 강대민, 2000, "유한요소법에 의한 정사각컵 디프드로잉 성형에 미치는 성형인자에 관한 연구", 한국해양공학회지 제 14 권 제 4 호, pp. 86-91.