단열회로를 이용한 16-bit 저전력 마이크로프로세서의 설계

A Design of 16-bit Adiabatic Low-Power Microprocessor

  • 신영준 (숭실대학교 전자공학과) ;
  • 이병훈 (숭실대학교 전자공학과) ;
  • 이찬호 (숭실대학교 정보통신전자공학부) ;
  • 문용 (숭실대학교 정보통신전자공학부)
  • Shin, Young-Joon (Dept. of Electronics Engineering Soongsil University) ;
  • Lee, Byung-Hoon (Dept. of Electronics Engineering Soongsil University) ;
  • Lee, Chan-Ho (School of Electronic Engineering, Soongsil University) ;
  • Moon, Yong (School of Electronic Engineering, Soongsil University)
  • 발행 : 2003.11.01

초록

단열회로를 이용한 16-bit 저전력 마이크로프로세서를 설계하였다. 본 논문에서 설계한 마이크로프로세서는 콘트롤 블록, 멀티포트 레지스터 파일, 프로그램 카운터 그리고 ALU로 구성되어 있다. 또한 저전력 단열 프로세서에 필요한 효율적인 4-phase 전원클럭 발생기도 설계하였다. 단열회로는 ECRL(Efficient Charge Recovery Logic)을 기반으로 설계되었고 0.35㎛ CMOS 공정을 이용하여 구현하였다. 단열프로세서와 일반적인 프로세서와 에너지를 비교하기 위해서 CMOS를 기반으로 한 프로세서를 설계하여 에너지 비교를 수행하였다. 시뮬레이션 결과 기존의 CMOS 프로세서보다 2.9∼3.1배의 에너지 감소효과를 보였다.

A 16-bit adiabatic low-power Microprocessor is designed. The processor consists of control block, multi-port register file, program counter, and ALU. An efficient four-phase clock generator is also designed to provide power clocks for adiabatic processor. Adiabatic circuits based on efficient charge recovery logic(ECRL), are designed 0.35,${\mu}{\textrm}{m}$ CMOS technology. Conventional CMOS processor is also designed to compare the energy consumption of microprocessors. Simulation results show that the power consumption of the adiabatic microprocessor is reduced by a factor of 2.9∼3.1 compared to that of conventional CMOS microprocessor.

키워드

참고문헌

  1. J. S. Denker, 'A review of adiabatic computing,' IEEE Symp. on Low Power Electronics, pp. 94-97, 1994 https://doi.org/10.1109/LPE.1994.573218
  2. A. Kramer, J. S. Denker, S. C. Avery, A. G. Dickinson and T. R. Wik, 'Adiabatic computing with the 2N-2N2D logic family,' in Symp. on VLSI Circuits Dig. of Tech Papers, pp. 25-26, 1994
  3. R. T. Hinman and M. F. Schlecht, 'Power dissipation measurements on recovered energy logic,' in Symp. on VLSI Circuits, pp. 19-20, 1994
  4. A. G. Dickson and J. S. Denker, 'Adiabatic dynamic logic,' JSSC, vol. 30, pp. 311-315, 1995 https://doi.org/10.1109/4.364447
  5. C. W. Kim, S. M. Yoo and M. S. Kang, 'Low power adiabatic computing with NMOS energy recovery logic,' electric letters, vol.36, pp. 1349-1350, Aug 2000 https://doi.org/10.1049/el:20000962
  6. H. Mahmoodi-Meinnand, A. Afzali-Kusha and M. Nourani, 'Adiabatic carry look-ahead adder with efficient power clock generator,' IEEE Proc., vol.148, pp. 229-234, Oct 2001 https://doi.org/10.1049/ip-cds:20010439
  7. L. Varga, F. Kovacs and G. Hosszu, 'An efficient adiabatic charge-recovery logic,' IEEE proc, southeastcon, pp.17-20, 2001 https://doi.org/10.1109/SECON.2001.923080
  8. Y. Moon and D. K. Jeong, 'An efficient charge recovery logic circuit,' IEEE JSSC, vol.31, No.4, pp. 514-522, Apr 1996 https://doi.org/10.1109/4.499727
  9. R. Brent and H.T. Kung, A regular layout for parallel adders, IEEE trans. on Computers, vol.C-31, no. 3, pp260-264, March 1982 https://doi.org/10.1109/TC.1982.1675982
  10. Jan M. Rabaey 'Digital Integrated Circuits' Prentice Hall Electronics and VLSI series pp. 359-362 pp.209
  11. Joonho Lim, Kipaek Kwon and Soo-Ik Chae, 'Reversible energy recovery logic circuit without non-adiabatic energy loss' Electronics Letters, Vol:34 Issue:4, 19 Feb 1998 https://doi.org/10.1049/el:19980261
  12. H. S. Lee, I. H. Na, H. H. Lee and Y. Moon 'A 16-bit Adiabatic macro blocks with supply clock generator for micro-power RISC Datapath' ITC-CSCC2002, pp. 1563-1566, July 2002