참고문헌
- F. Hlawatsch and G. F. Boudreaux-BarteIs, 'Linear and quadratic time-frequency signal representations,' IEEE Signal Proc. Magazine, 9, 21-67, April 1992 https://doi.org/10.1109/79.127284
- L. Cohen, 'Time-frequency distributions,' Proceedings of the IEEE, 77, 941-981, July 1989 https://doi.org/10.1109/5.30749
- W. Kozek, 'On the generalized Weyl correspondence and its application to time-frequency analysis of linear time-varying systems,' IEEE-SP Int. Symp. on TFTS, Canada, 167-170, Oct. 1992
- W. Kozek, F. Hlawatsch, H. Kirchauer and U. Trautwein, 'Correlative TF analysis and classification of nonstationary processes,' IEEE-SP Ini. Symp. on TFTS, Phil., PA, 417-420, Oct. 1994
- R. G. Shenoy and T. W. Parks, 'The Weyl Correspodence and TF analysis,' IEEE Trans. on Sig. Proc., 318-331, Feb. 1994
- B. lem, 'Generalizations of the Weyl symbol and the spreading function via TF warpings: Theory and application,' Ph.D dissertation, Univ. of RI, Kingston, RI, 1998
- B. lem, A. Papandreou-SuppappoIa and G. F. Boudreaux-Bartels, 'Wideband Weyl symbols for dispersive time-varying processing of systems and random signals,'IEEE Trans. on Signal Proc., 1077-1090, May 2002
- I. Gohberg and S. Goldberg, Basic Operator Theory, (Birkhauser, Boston, MA, 1980)
- G. Matz and F. Hlawatsch, 'Time-frequency formulation and design of optimal detectors,' Inf. SymP. on TFTS, Paris, 213-216, June 1996
- A. M. Sayeed and D. L. Jones, 'Optimal quadratic detection and estimation using generalized joint signal representations' IEEE Trans. on Signal Proc., 3031-3043, Dec. 1996
- G. Matz, F. Hlawatsch, and W. Kozek, 'Generalized evolutionary spectral analysis and the Weyl spectrum of nonstationary random processes,' IEEE Trans. on Signal Proc., 1520-1534, June 1997
- R. G. Shenoy and T. W. Parks, 'Wideband ambiguity functions and affine Wigner distributions,' Proc. EURASIP, 41, 339-363, 1995
- P. Bertrand and J. Bertrand, 'TF representation of broad band signals,' Proc. IEEE ICASSP, NY, 2196-2199, April 1988
- A. Papandreou, F. Hlawatsch and G. F. Boudreaux-Bartels, 'The hyperbolic class of QTFRs, Part I,' IEEE Trans. on Signal Proc., 3425-3444, Dec. 1993