Abstract
A comprehension-based approach to learning assumes that incoming information and background knowledge are integrated to form a mental representation which is subsequently used to incorporate new knowledge. It is demonstrated that this approach can be validated by comparing human and computational model performance in the prompt learning context. A computational model (ADAPT-UNIX) based on the construction-integration theory of comprehension (Kintsch, 1988; 1998) predicted how users learn from help prompts which are designed to assist UNIX composite command production. In addition, the comparison also revealed high similarity in composite production task performance between model and human. Educational implications of present research are discussed on the basis of the fact that prompt instructions have differential effect on learning and application as background knowledge varies.
학습에 대한 이해-기반 접근에 따르면 새로운 정보는 기존의 배경지식과 통합되어 정신표상을 형성하며 이는 다른 새로운 정보를 결합하는데 사용된다고 가정한다. 지시문을 통한 학습상황에서 인간과 계산적 모형의 수행비교를 통해 이 접근법이 타당하다는 것을 보여주었다. 구성-통합 이론 (Kintsch, 1988; 1998)에 근거한 계산적 모형 (ADAPT-UNIX)은 사용자들이 UNIX 복합 명령문을 생성하는데 도움을 주기위해 제시된 지시문 학습에 높은 예측력을 보였다. 더불어, 제시된 지시문을 사용하여 올바른 복합명령문을 생성하는 과제수행도 실제 인간수행과 높은 유사성 보였다. 배경지식의 수준에 따라 지시문이 학습과 적용에 차별적인 영향을 미친다는 교육적 함의와 이해-기반 인지모델의 이론적 함의가 논의되었다.