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Learning from Instruction: A Comprehension-Based Approach

M7 Zog  oxM &g’
(Shin Woo Kim) (Min Young Kim) (Jisun Lee ) (Young Woo Sohn)

2 9 gspol Ui ojsl-sgk o) mEd Agd AhE 7E&Y wAAAD S0 ANESS
845 ol thE M2 ARE AYsied AEIdn /AT AAES BT SN A
ANY o] FPuiag T o F2yol gl AL BAFUtk FA-5F o] &(Kintsch, 1988;
1998)ell TAF A4tH ZH(ADAPT-UNIX)E AHEAtEo] UNIX % wHES 3431ed 58S 279
3 AME ANE Bl 22 d58e RAT HEo), AAY AAEL AHR3lY gulg EfysEe
A AAFRE AA A75P 2 KA Bk WA 43 wa}l RA|Re] H4u HE
o 23pEHQ FFL vtk B8F Fels} ofsl-7I AARde] 0|23 §telyl ==t

ZFH0] AlH A=Y, ofs, o, FHx

Abstract A comprehension-based approach to leaming assumes that incoming information and background
knowledge are integrated to form a mental representation which is subsequently used to incorporate new
knowledge. It is demonstrated that this approach can be validated by comparing human and computational model
performance in the prompt leaming context. A computational model (ADAPT-UNIX) based on the
construction-integration theory of comprehension (Kintsch, 1988; 1998) predicted how users leam from help
prompts which are designed to assist UNIX composite command production. In addition, the comparison also
revealed high similarity in composite production task performance between model and human. Educational
implications of present research are discussed on the basis of the fact that prompt instructions have differential

effect on leaming and application as background knowledge varies.
Keywords  computational cognitive model, comprehension, learning, UNIX

1. INTRODUCTION

Leaming from problem solving episodes has previously
been investigated by different traditions and several have
been implemented as computational models. For example,
case-based leamning (e.g., Hammond, 1989) assumes that we
acquire knowledge by storing cases in memory which are, in
general terms, the specific plans for different problems.
Search-based models like SOAR leam by chunking the
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results of the search process (e.g, Rosenbloom, Laird,
Newell, & McCarl, 1991). Anderson’s ACT-R model of
cognition learning is govemed by the use of analogical
interpretive problem solving processes (Anderson, 1993,
1998). The present research builds upon a third emerging
theory of leaming, a comprehension based approach, which
uses an association between problem descriptions (in this
case, incoming instructions to produce a command) and
background knowledge to first activate relevant knowledge to
construct a coherent situation model. This mental
representation is then used to incorporate new knowledge
(e.g., Schmalhofer & Tschaitschian, 1993).

In the present research, it is hypothesized that a
computational model based on the construction-integration
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theory of comprehension (Kintsch, 1988; 1998) can explain
and predict how individual users will comprehend and learn
from help instructions as they attempt to generate complex
computer commands. Kintsch's theory has been used to
explain a wide variety of behavioral phenomena, including
narrative story comprehension (Kintsch, 1988), algebra story
problem comprehension (Kintsch, 1988), the solution of
simple computing tasks (Mammes & Kintsch, 1991), and
completing the tower of Hanoi task (Schmalhofer &
Tschaitschain, 1993). This approach also proved to be
effective for understanding human-computer interaction skills
(e.g., Doane, McNamara, Kintsch, Polson, & Clawson, 1992;
Kitajima & Polson, 1995; Mamnes & Doane, 1991). The
breadth of application suggests that the comprehension
processes described in Kintsch’s model play a central role in
many tasks, and therefore can be considered a general
architecture of cognition (Newell, 1990).

Although the studies described above provide important
support for the centrality of comprehension in cognition, they
do not test the ability of this approach to predict human
performance in a learning environment. Therefore, the main
goal of this study is to determine if this comprehension-
based framework can be extended to account for learning
from technical instructions.

1.1. Construction-Integration Theory

The construction-integration model (Kintsch, 1988) was
initially developed to explain certain phenomena of text
comprehension, such as word sense disambiguation. The
model describes how we use contextual information to assign
a single meaning to words that have multiple meanings. For
example, the appropriate assignment of meaning for the
word ‘bank’ is different in the context of conversations
about paychecks and about swimming. In Kintsch’s view,
this can be explained by representing memory as an
associative network where the nodes in the network contain
propositional representations of knowledge about the current
context or task, general (context-independent) declarative
facts, and IffThen rules that represent possible plans of
action (Mannes & Kintsch, 1991). The declarative facts and
plan knowledge are similar to declarative and procedural
knowledge contained in ACT-R (e.g., Anderson, 1993).

When the model simulates comprehension in the context of
a specific task (e.g., reading a paragraph for a later memory

test), a set of weak symbolic production rules ‘construct’ an
associative network of knowledge interrelated on the basis of
superficial similarities between propositional representations of
knowledge without regard to task context. This associated
network of Iknowledge is then ‘integrated® via a
constraint-satisfaction algorithm that propagates activation
throughout the network, strengthening connections between
items relevant to the cument task context and inhibiting or
weakening connections between irrelevant items. This
integration phase results in context-sensitive knowledge
activation constrained by inter-item overlap and current task
relevance.

The ability to simulate context-sensitive knowledge
activation is most important in present research because the
task domain requires novel plans of action rather than retrieval
of known routine procedures (e.g, Holyoak, 1991).
Symbolic-connectionist architectures such as the one utilized
in the present study use symbolic rules to interrelate knowledge
in the network, and then spread activation throughout the
network using connectionist constraint- satisfaction algorithms.
This architecture has significant advantages over solely
symbolic or comnectionist forms since it enables to study
context-sensitive aspects of adaptive problem solving (e.g.,
Broadbent, 1993; Holyoak, 1991; Holyoak & Thagard, 1989;
Mamnes & Doane, 1991; Thagard, 1989).

2. PRESENT RESEARCH

The main goal of present research is to determine if
comprehension-based framework can be extended to account
for leaming from technical instructions. Specifically, it is
evaluated whether the comprehension strategies of
ADAPT-UNIX, a construction-integration model containing
knowledge of UNIX commands, adequately account for the
type of instructions users find helpful to their command
production performance. Detailed empirical data on leaming
to produce complex, sequence-dependent commands in the
UNIX operating system is available for this purpose. In
previous empirical studies (Doane, McNamara, Kintsch,
Polson, & Clawson, 1992; Schn & Doane, 1997), users of
varying experience with the UNIX operating system was
asked to produce complex UNIX commands, and then
provided help prompts when the commands they produced
were emroneous. The help prompts were designed to assist



NAAEE B8 g4 ol3frIe F2 25

users with both knowledge and processes that previous
research has indicated are lacking in less expert users
(Doane, Pellegrino, & Klatzky, 1990). The results showed
significant differences in learning from instructions (prompts)
as a function of UNIX background knowledge.

In the present research, comprehension-based computational
mode! (ADAPT-UNIX) is extended to include learning
mechanisms in order to model the individuals in the prompting
study. To do so, each individual’s performance was analyzed
to identify their initial knowledge base, which represents the
knowledge they displayed without prompting. Using this
knowledge base, the same prompts which are given to
participants were given to model when it executes an
unsuccessful action plan, and then run the mode! again so the
incoming prompt instructions can activate knowledge to attempt
to solve the problem again. This procedure enabled to extend
the theory in understanding how users learn from instructions
to plan complex actions, and a detailed analysis of the match
between model and actual performance could be acquired.

3. EMPIRICAL PROMPTING STUDY

The goal of the empirical prompting study was to determine
more precisely what users at different levels of expertise know

about UNIX, what information is lacking when users produce
erronecus  commands, and what information (ie., prompt
contents) help the users. The experiment used a prompting
paradigm to assess the knowledge and process of users at
various levels of expertise. It’s assumed that users have
different amounts of the required four types of knowledge (see
General knowledge in Table 1) and that displaying the prompis
which help with each type of knowledge will influence
subsequent user performance, if they lack this knowledge.

3.1. Participants

In the full empirical study (Doane, McNamara, Kintsch,
Polson, & Clawson, 1992), twenty-two engineering majors
completed 21 composite command production tasks.
However, the present research analyzes only subset of these
participants because only two representatives from each of
three expertise levels were modeled for the proposed
purpose. All participants had received prior instruction about
redirecting standard input and output in their coursework and
had experience with using redirection symbols to complete
coursework or other tasks using UNIX. Experience with
UNIX ranged from less than 1.25 years for novices (n = 10),
between 1.25 and 3.0 years for intermediates (n = 8), and
greater than 3 years for experts (n = 4).

Task Description

Format the text in ATT2 using the -ms macro package and store the formatted version in ATT4

Prompts

Prompt 1 You will need to use the
following command

One that will format the contents of a file
using the -ms macro package

Prompt 5 You will need to use the amow
symbol > and the command nroff -ms

Prompt 2 You will need to use this
command

nroff -ms will format the contents of a file
using the —ms macro package

Prompt 6 You'll need to use an nroff ~ms
on ATT2 (which will output the formatted
contents of ATT2), and you'll need to
redirect this outout as inout to ATT4

Prompt 3 You will need to use a special
symbol that redirects command output to
afile

Prompt 7 You will need to use exactly the
following command elements (through not
necessarily in this order): >, nroff -ms

Prompt 8 You'll need to use the command
nroff -ms followed by the arrow symbol '

Prompt 4 You will need to use armow
symbol *>' that redirects output from a
command to a file

Prompt 9 The comrect production is proff -
ms ATT2>ATT1
Please enter this production now

(Figure 1) Example of task description and prompts for the problem ‘nroff -ms

ATT2>ATT1.
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3.2. Materials and Procedure

All production tasks were performed on a computer. The
stimuli were task statements, a fixed directory of file names
and a series of help prompts, displayed when appropriate on
the screen, as well as three error cards presented by the
experimenter. Participants typed their command or series of
commands on the keyboard to accomplish a given task and
then used the mouse to click on a display button to obtain
an evaluation of their answer. The task instruction described
actions that could best be accomplished by combining two or
three commands through the use of redirection (ie.,
composite problems; see Figure 1). Accompanying the task
statement was a fixed directory listing of all file names that
were used in the experiment.

For incorrect response, there was a series of help prompts
designed to address specific types of deficits in the
participants’ UNIX knowledge. These prompts were displayed
on the screen one at a time in a fixed order regardless of the
type of emor that the participant had made. The system
simply parsed an answer to determine if it contained the
required syntax in the requisite order and if it did not, then
the system would display the next prompt in the sequence.

There are seven different areas in which the help prompts
could assist the participants, and these are best described by
referring to the example in Figure 1. Prompt 1 parses the task
statement into relevant command concepts. Prompt 2
identifies actual command syntax (command syntax
knowledge). Prompt 3 explains concepts of redirection in an
abstract fashion, independent of syntax (conceptual IO
redirection knowledge). Prompt 4 identifies the actual JJO
redirection symbols (I/O redirection syntax knowledge)
required for the problem. Prompts 5 and 7 remind the
participant of the complete set of items that have already been
identified in previous prompts. Prompt 6 is the first prompt
that determines the order of commands and symbols for the
participant (providing command redirection knowledge and
help with tracking intermediate results). This information is
repeated in Prompt 8. Finally, Prompt 9 gives the participant
the correct production.

4. SIMULATION EXPERIMENTS

We simulated six UNIX wusers (two novices, two
intermediates, and two experts) participated in the

aforementioned empirical prompting study. To simulate a
given individual, ADAPT-UNIX accessed the appropriate
knowledge base, received task instructions, and then
proceeded to produce action plans for 21 composite
commands in the same order attempted by the simulated
individual. If any command production errors were made,
ADAPT-UNIX received help prompts in the order viewed by
modeled individuals, reprocessed the modified knowledge base
via construction-integration cycles and then tried again to
produce the comrect command. This attempt-prompt-attempt
process was repeated until the correct command was produced.

ADPT-UNIX simulation will be outlined starting from
knowledge structure. This will be followed by procedures used
to construct individual’s initial knowledge base to simulate
each participant. Then, ADAPT-UNIX model and its
execution will be overviewed.

4.1. ADAPT-UNIX Knowledge Representation

ADAPT-UNIX represents human memoty as an associative
network in which each node in the network corresponds to
propositional representations of knowledge. Each proposition
contains a predicate and some number of arguments, which in
ADAPT-UNIX represent knowledge about the computing
domain or the present task. ADAPT-UNIX represents the
three major classes of knowledge proposed by Mannes and
Kintsch (1991); World, general (e.g., declarative knowledge),
and plan element knowledge (e.g., procedural knowledge
represented as IffThen rules; see Table 1).

Table 1. Examples of Knowledge Representation in ADAPT-UNIX

Type of knowledge  Abbreviated propositional representation
World knowledge
File exists in directory
At system level
Goal is to format file
General knowledge
Command syntax “nroff” formats file
I/O syntax ">" redirects output from command to file
Conceptual I/O I/O can be redirected from command to file
Command redirection “nroff” output can be redirected to file
Plan knowledge
Name: Format contents of a file
Preconditions: Know “nroff'formats file
Know “nroff” "-ms” flag
Know file exists in directory
Outcome(s): Formatted file exists
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4.1.1, World Knowledge

World knowledge represents the current state of the world.
This includes knowledge of the current task, existing files on
the current directory, and the system in use (UNIX). These
facts are contextually sensitive and fluid as the task and
simulated performance progresses.

4.1.2. General Knowledge

General knowledge refers to factual (declarative)
knowledge about UNIX. In ADAPT-UNIX, general
knowledge includes the command syntax, J/O syntax,
conceptual JJO redirection, and command redirection UNIX
knowledge required to produce correct composite commands.

4.1.3. Plan Element Knowledge

Plan element knowledge represent executable (procedural)
knowledge. Plan elements describe actions that can be taken
in the world, and they specify conditions under which
actions can be taken. Thus, users have condition-action rules
that can be executed if conditions are correct. Plan elements
are three-part knowledge structures, including name,
preconditions, and outcome fields (see Table 1). The name
field is self explanatory. The preconditions refer to

knowledge of the world or general knowledge that must
exist before a plan knowledge can be executed When plan
element fires, plan element outcome fields are added to the
model’s world knowledge.

4.2. Constructing Individual Knowledge Base

Each individual’s starting knowledge was constructed by
evaluating each user's UNIX knowledge using a small
portion of empirical performance data, This determined
initial contents of individual knowledge base were accessed
by ADAPT-UNIX to simulate each individual. Using overlay
method (see VanLehn, 1988), missing knowledge as well as
incorrect knowledge was scored. To determine the starting
state of a participant’s UNIX background knowledge, each
knowledge component of the participant’s response was
scored as to whether it was made before or after explicit
instruction. To account for users’ erroneous as well as
correct command productions, each user’s answers were also
scored to determine what incomect knowledge the user
displayed before instruction on that knowledge.

4.3. ADAPT-UNIX Construction-integration Cycle
The participant’s knowledge was entered into an initial

w Knowledge base including General (G)
(1) Access knowledge G and Plan elsment knowledge (P) and
base the current status of task in World

P knowledge (W)

w G
(2) Construct an w .
assoclated knowledge 6 Task connectivity matrix
network
P
Initial
{3) Muitiply the task ——eee
Connectuty et by X [111..100....00  activation
the initial activation World knowled vector
vector 90
(4) Produce a resulting ‘ .
activation vector [2309. . ... .07) Resuling
{ vector
(5) Continue Is change in Normalize resulting vectol
:?’ﬁ'g;ailion hproot;ss successive vector _..N° and use to replaoegthe '
ctivation of activation <.0001?
Knowledge is Initial vector,
stabilized
Yes ’
Most recent resulting vector

(8) Produce a final .
activation r ;;bogg:res the final integrated

(Figure 2) Schematic representation of construction-integration process.
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knowledge base, and the model was given the initial
problem statement in the world knowledge. Knowledge about
the domain and a particular task is represented in a
distributed manner, and the pattern of activation across nodes
determines the current model of the problem situation. These
symbolic nodes are interrelated in two distinct stages that are
uniquely structured to represent comprehension.

4.3.1. Construction

During construction, the model computes relationships
between propositions in the knowledge base (k) to construct
a task-specific network of associated knowledge as depicted
in Figure 2, steps 1-2. The model uses low-level rules to
construct asymmetric task connectivity matrix (c), where
each node (c(i, j)) contains a numeric value corresponding to
the calculated strength of the relationship between k(i) and
k(j). The resulting network, depicted in Figure 2, represents
the unconstrained relationships between knowledge brought
to bear to accomplish this specific task. The low-level rules
used to determine if two nodes were related did not vary
between or with simulations since Kintsch’s (1988) model
introduction.

Table 2. Abbreviated Example Task Description Propositions for
“sort PROP1|head”

Pl (KNOW FILE'PROPI)

P2 (REQUEST DISPLAY FIRST“TEN'LINES ALPHABETICALLY"ARRANGED
ON'SCREEN)

P3 (OUTCOME DISPLAY FIRST*TEN'LINES ALPHABETICALLY"ARRANGED
ONSCREEN)

4.3.1.1. Binding

Before construction a task commectivity matrix,
ADAPT-UNIX is given the task description in propositional
form, as shown in Table 2. ADAPT-UNIX binds specific
objects mentioned in the task description (e.g., the file name
PROP1) to proposition fields that contain the appropriate
variable (e.g, FILE'NAME). For example, if a task
description mentions the existence of a particular file call
PROP1, all the plan elements with the argument
FILE'NAME are duplicated and bound to the file PROPI.
That is, FILE'NAME becomes FILE*PROP1, where “*” is
the symbol used to concatenate the two arguments together.
The binding process is repeated each time a unique filename

is mentioned (Eg, PROP1 and JOBP). If the task
description includes an initial file name and the modified
contents of the initial file (e.g, PROP1 and
ALPHABETICALLY"ARRANGED"PROP1), they are
treated as unique files and propositions are duplicated
accordingly.  Functionally, this  duplication allows
ADAPT-UNIX to represent the unconstrained binding
process hypothesized by Kintsch (1988).

4.3.1.2. Associative relationships

Associative  relationships  between each pair of
propositional nodes (c(i, j)) in the network are based on the
number of shared arguments, and completely embedded
propositions. Propositions are linked with a positive weight
for each argument shared and for each proposition
embedded. For example, the propositions (KNOW NROFF
FORMAT FILE) and (EXISTS UNFORMATTED FILE)
share one argument (FILE). The corresponding nodes in the
network (c(ij); c(j;)) would be positively linked with a
weight of 04 because they share this argument. If one
proposition is entirely embedded in another, the two
propositions are linked with a weight of 0.8, Overlap with
prompt proposition results in an overlap of 0.2. Although
these relationships provide only a crude approximation of
propositional relatedness, they have been effective in prior
simulations of text comprehension and memory (Kintsch,
1988).

(DELETE FILE)
{KNOW FILE LOCATION)
{NOTAEXIST FILE)

5 +
(FIND FILE) /
(EXIST FILE) |_/

(KNOW FILE LOCATION}

Figure 3. Example precondition and outcome interplan
relationships. (*+” = positive; “-” = inhibitory).
4.3.1.3. Plan element relationships
Three field comprise a plan element; name, precondition,
and outcome. Propositions representing these fields are
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represented as a single node in the network Overlap
between plan element precondition and outcome fields is
calculated to estimate casual relationships between plan
elements. For example, if the outcome(s) of one plan (p(j))
satisfy the precondition(s) of another (p(i)), then a positive
asymmetric weight of 0.7 will be added to the respective c(i,
j) node in the task connectivity network. If an outcome(s) of
one plan element negates the precondition(s) of another, then
an asymmetric inhibitory link of -10.0 is entered into the
corresponding c(i, j) node.

Figure 3 depicts these casual relations for two abbreviated
example plan element to delete and to find a file. A positive
link exists from (DELETE FILE) to (FIND FILE) because
the DELETE plan element precondition (KNOW FILE
LOCATION) is satisfied by the outcome of the FIND plan
element. An inhibitory interplan relation from (FIND FILE)
to (DELETE FILE) exists as well (see Figure 3). The
outcome (NOT“EXIST FILE) of the DELETE plan element
negates the precondition (EXIST FILE) for FIND.

Two relations between plans and world knowledge are
calculated. First, if the outcome(s) of a plan element already
exist in the world, then an asymmetric inhibitory link of
-10.0 exists between each proposition in the world
knowledge that matches the outcome(s) propositions. For
example, if the out come of the FIND plan element (KNOW
FILE LOCATION) exists in the world, the FIND plan
element is inhibited during integration. Another related
inhibitory link of -0.4 is used between traces representing
actions previously accomplished (e.g., TRACE FILE EXISTS
IN-THE-WORLD) and name propositions of plans that will
accomplish the already executed goal (e.g., FIND FILE), and
share an argument overlap. These two inhibitory relationships
are calculated to keep the model from repeating itself.

Second, if the name or the outcome fields of a plan
element match the REQUEST and OUTCOME propositions
that represent the current task in the world, a positive link of
1.5 is made between the matching propositions. Specifically,
a symmetric weight of 1.5 is applied to the respective c(i,j)
and c(j,i) that represent links between matching REQUEST
and plan element name propositions, and OUTCOME and
plan element. outcome propositions,

To summarize, ADAPT-UNIX uses the construction
relationships and weights devised by Mamnes and Kintsch
(1991), including argument overlap weights of 0.4 and 0.2, a

proposition  embedding weight of 0.8, plan element
precondition and outcome mappings of 0.7 (positive), and
-100, and -04 (inhibitory), and a weight 1.5 for the
aforementioned REQUEST and OUTCOME propositions that
match plan element names and outcome fields, respectively.
Where no link was specified, cormections were set to zero.
These parameter values have been used in all C-I modeling,
and remain constant here. As suggested by Thagard (1989),
the weight stability is critical for assessing the reliability of
a cognitive architecture across simulation efforts.

4.3.2. Integration

The constructed network of knowledge represents
unconstrained relations between knowledge elements. To
develop a situation model (e.g, Kintsch, 1988), this
knowledge is integrated by using a simple linear
constraint-based algorithm to spread activation throughout the
network. This process essentially strengthens the activation
of knowledge elements consistent with the task context, and
dampens the activation of others. The simple linear
algorithm used to integrate the constructed knowledge base
in illustrated in Figure 2, steps 3-6.

Computationally, integration constitutes the repeated
post-multiplication of the constructed network (matrix) by a
vector. The vector values represent the current activation of
each knowledge element represented (e.g., the value of the
first item in the vector represents the current state of
activation of the first proposition in the knowledge base, and
so on). As depicted in Figure 2, the initial vector values
corresponding to the in-the-world knowledge are set to 1.0
and all others are set to 0. Functionally, this allows the
in-the-world propositions that represent the current task
context to drive the spread of activation. This initial
activation vector is post-multiplied by the cormectivity matrix
resulting from the construction process (see step 3 in Figure
2), and a resulting activation vector is produced (see step 4
in Figure 2). After each multiplication, the vector weights
corresponding to the current set of world propositions are
reset to 1.0, and the remaining propositions are normalized
to ensure their sum is a constant value across integrations
(see step 5 in Figure 2).

The iterative integration process stops when the difference
between two successive activation vectors is less than
0.0001. At this point, the resulting activation vector becomes
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(1) Access Knowledge:

Access initial knowledge base for individual model. @
1
)

(2) Read Task Instructions:

Add instructions for current task to world knowledge. O
I 8

L]

(3) Construct and Integrate:
Construct then integrate knowledge base (see Figure 2).

(4) Select Plan:
Find most activated plan element.

{5) Fire?
Are the plan preconditions
met in either world or
general knowledge?

Look for next most
activated plan element.

{6) Fire Plan:
Add outcome(s) of plan elements to world knowledge.

(7) Memory Overload?
Is there world knowledge
beyond memory limits?

Yes | Deletethe
propositions least
activated

(8) Task Completed?
Is cormrect composite
command represent in

the world?

Delete current task

instructions and
Yes | outcomes from world

knowledge. Retain
acquired knowledge.

Move to next task.

o |

Read Next Prompt: B
Add next prompt to world knowledge.

Figure 4. Schematic representation of the procedure used to simulate each UNIX user’s command
production.

the final activation vector and represents the stabilized used by the model to make execution decisions regarding the
activation of knowledge. The final activation vector is then next plan element to fire (see steps 5-6 in Figure 2).
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4.4. Overview of the Model Execution

ADAPT-UNIX was run to simulate each individual's
performance in command production tasks, responding to
help prompts identical to those given to each of the users.
The simulation procedures are schematically represented in
(Figure 4).

4.4.1. Plan Selection

A given user’s knowledge base is accessed by
ADAPT-UNIX, and the problem description for the first
composite production task is added to the world knowledge.
The model executes a construction-integration cycle, and
finds the most activated plan element and determines
whether its preconditions exist in the world or general
knowledge. If they exist, then the plan is selected to fire,
and its outcome propositions are added to the world
knowledge. If they do not exist, then this process is repeated
using the next-most-activated plan element until a plan can
be fired. The outcome field of the fired plan element is
added to the world knowledge to update the world situation.
Then, construction-integration begins again with the modified
knowledge base until the model represents a plan of action
(made up of a sequence of fired plan elements) that will
accomplish the specified task in the world (see steps 4-6 in
Figure 4).

4.4.2. Comprehension-Based Learning

For the present purposes, leaming is measured as the
ability to use prompted knowledge in subsequent production
attempts. We assume that leaming occurs if the first use of
prompted knowledge occurs following prompt presentation.
That is, if a user does not display knowledge of the nroff
command untl prompted with nroff command syntax
knowledge, then we assume that they leamed nroff syntax
knowledge from the prompt.

In ADAPT-UNIX, the activation of prompted knowledge
is a central component of the simulated learning mechanism,
As previously stated, activation of knowledge is constrained
associative relationships between knowledge in the world and
preexisting background knowledge. The activation of
prompted knowledge is presumed to dictate the probability
of its use in subsequent productions. Computationally,
learning is represented in ADAPT-UNIX as the transfer of
prompt propositions from temporary in-the-world knowledge

to permanent general or plan element knowledge, a prompt
proposition must be retained in world knowledge and must
satisfy a precondition of a plan element being considered for
firing.

4.4.3. Memory Constraints

A memory component (see step 7 in Figure 4) is
incorporated in the ADAPT-UNIX simulations to represent
working memory capacity limitations. Capacity limitations are
represented by deleting in-the-world propositions once their
number exceeds working memory capacity limitations
(represented as a parameter value), where propositions with
the lowest activation are deleted first. For example, if the
capacity limits are set to 4, the in-the-world propositions that
are not among the fourth most activated are deleted. Because
proposition activation is constrained by relevance to the
current task context, this procedure simulates context-sensitive
working memory limitations. This capacity function is applied
only to the in-the-world propositions that represent
instructional information. However, a decay component of
memory is not incorporated in the ADAPT-UNIX simulations
because all instructions remain on the screen in the empirical
UNIX study.

5. RESULTS AND DISCUSSION

To determine if comprehension-based approach can be
extended to account for leaming from technical instructions,
results from empirical and simulation study were compared
regarding two aspects of the data; comrect command
production and four types of UNIX knowledge.

5.1. Correct Command Production

5.1.1. Scoring Correct Command Production

For the empirical work, productions were scored as
comect by the computer if they matched the syntax of the
idealized command (spaces were not included). Thus, a
participant had to produce the command that required the
least number of keystrokes (ie., participants could not
substitute ‘sort file 1>temp; head temp>file 2’ for the
command ‘sort file 1| head>file 2’). Productions produced by
each model were scored using the same rules of correctness.
The problems simulated in this paper are those requiring the
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Figure 5 (@ & b). Mean percent comect productions for
novice, intermediate, and expert participants and models.
greatest percentage (60-100%) of new knowledge for
solution, as detailed in Doane et al. (1992). This subset of
problems is discussed in this paper.

5.1.2. Correct Command Production as a Function
of Prompt

Figure 5 shows the cumulative percentage of correct
composite productions for the three participant groups and
models as a function of prompt. The data are cumulative;
participants (and modeled participants) who cormectly
produced a problem at Prompt 4 were included as correct
data point as Prompts 5-9 as well. Thus, at Prompt 9, all of
the participants in each expertise group were at 100% correct
performance. Looking at the empirical results in Figure 5(a),
expetts have the highest correct percentage overall, followed

by the less expert groups. Prompts have differential
influences on correcting performance for the three expertise

groups. For example, the - change in percent correct
performance from Prompt 3 to Prompt 4 is zero -for
intermediates and experts, suggesting that Prompt 4, which
gives J/O syntax information (sce Figure 1) provide little or
no new information to them. Conversely, the same change
between Prompts 3 and 4 for the novices is large, suggesting
that this prompt does provide them with significant new
information. Experts and intermediates require fewer prompts
in order to obtain perfect performance. Novices, in contrast,
only obtain perfect performance once they are exposed to
the final prompt which gives the exact command, Prompt 9.
Looking at the modeling results in Figure 5(b), the basic
expertise effect was obtained.D For the model, as for the
participants, Prompt 4 helps the novices but not the
intermediate group.

5.2. Knowledge Analysis

5.2.1. Scoring of Knowledge

Each of the problems given to participants and the model
required a certain amount of the four types of general
knowledge discussed earlier. Answers for the present tasks
were scored for the percentage of each type of knowledge
displayed by a participant and by a model of the participant
at each prompt level.

5.2.2. Knowledge Score after Each Prompt

Figure 6 shows the mean knowledge scores for the three
expertise groups after Prompts 0-9 for both the participants
and models. The arrow markers specify which prompt first
provided information relevant to the knowledge type
displayed in the graph. For example, in Figure 6(a), Prompt
2 is the first prompt that describes all of the command
syntax knowledge required to complete the task (see Figure
1 for an example of all prompt types described in this
section), and the arrow indicates knowledge displayed after
presentation of Prompt 2. The change in the knowledge
score for command syntax between Prompts 1 and 2
indicates the effect of Prompt 2. The component knowledge
shown is higher than the percent correct scores shown in
Figure 5(a). This is because an attempt can show high, but

1) Two representative experts were scored across  their
performance, and they displayed all of the requisite knowledge
without prompting. This led to 100% correct performance by
the model (see Figure 5(b)).
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not perfect component knowledge, and component
knowledge must be perfect for an attempt to be entered as
correct in Figures 5(a) and 5(b).

The difference between percent correct performance and
the amount of knowledge displayed in an attempt can be
examined by comparing the knowledge scores shown in
Figures 6(a) and 6(b) with the percent correct performance
shown in Figures 5(a) and 5(b). Figure 6(a) suggest that for
novice and intermediate groups, presentation of Prompt 2
improves command syntax knowledge, but only intermediates
show improvement in percent comect performance (see
Figure 5(a)). The lack of change in percent correct
performance for the novice groups (see Figure 5(a)) suggests
that for them, the prompt is not sufficient to guarantee that
subsequent attempts will show perfect command syntax
knowledge. Figure 6(b) shows similar pattern of
improvement for modeled novices and intermediates in
response to the command syntax prompt. The novice model
shows the greatest improvement in command syntax
knowledge at Prompt 2. The novice model also shows an
increase in comect performance (see Figure 5(b) at Prompt
2), which differs from the participant performance. The
remaining Figures (Figures 6(c-h)) can be examined in a
similar fashion, where the comparison show that the model
does a good job of predicting what type of information is
important to improve the amount of knowledge displayed in
an attemnpt for novices, and slightly less so for intermediates.

To quantify the fit between the participant and the model
data, comrelations between participants and their
cotresponding models were performed on the knowledge
scores as a function of prompt and on the change in
knowledge scores as a function of prompt. The change
scores provide a more stringent test of the fit between the
model and the participant data because it pinpoints the
changes between prompts rather than the general increase in
knowledge. Table 3 shows the resulting correlation values.
Descriptively speaking, Table 3 suggests that the model does
a good job for predicting the pattern of improvement in
percent correct performance, showing the best fit with the
novice data. The change scores indicate that the model does
a good job of predicting the syntax-based knowledge for
novices, and command redirection knowledge for the
intermediates. The fit between expert’s performance and the
model’s predictions was not calculated due to ceiling

performance.

The analysis suggests that there is a good match between
what the model learns from instructions, and what the actual
participants leam. The differences in what knowledge is
relevant as a function of expertise is consistent for the actual
novice and intermediate participants, and their models.

6. GENERAL DISCUSSION

We have shown that the construction-integration model
can be extended to account for leaming from technical
instructions. Using this comprehension-based approach, it
was possible to predict what prompt instructions users will
apply and leam as a function of their background
knowledge. This work has implications for computer-aided
instruction and intelligent tutoring. If we can specify what
instructions will be effective based on the activation resulting
from the overlap between incoming instructions and
background knowledge, then we can design more effective
instructional systems without having human participants
interact with the complex system.

Previous research (Doane et al., 1992) on UNIX command
production have suggested that having all the necessary
knowledge including declarative and procedural knowledge
of the component commands is not sufficient for novices to
accurately produce correct commands. Rather, they also
needed help in ordering the elements which imposes
significant load on working memory. Later, Sohn and Doane
(1997) have pinpointed the locus of this deficit which was
working memory limitations and found out that specially
designed graphical aids reduce working memory demands
and thereby improves novice performance on correct
command production. In the present simulation experiment,
ADAPT-UNIX was able to mimic this critical feature of
novice UNIX user cognition, which is working memory
deficit, and enabled us to identify what knowledge UNIX
beginners lack and what knowledge will help their command
production as well. In conjunction with Sohn and Doane
(1997), we will be able to design more effective UNIX
programming interface by providing prompts and graphical
aids (as suggested by Sohn & Doane, 1997) which contain
specific knowledge (identified by ADAPT-UNIX) the user
may require in accordance with their background knowledge
in UNIX programming.
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Theoretically, the present research provides further
evidence of the centrality of comprehension in cognition
(e.g., Gemnsbacher, 1990). This was accomplished by using a
comprehension-based model to simulate a complex problem
solving and learning environment. This enabled to extend the
theoretical premise of Kintsch’s (1988) construction-
integration theory to account for how computer users leam
to produce commands from instructions. This extends the
theory of planning, and more importantly, suggests that the
contextually constrained activation of knowledge central to
the comprehension-based approach is not only descriptive but
also predictive.

As Newell (1990) has once pointed out, the model
utilized in the present research has been tested on a wide
variety of tasks, and as such an architecture of cognition is
under development. Further, the implementation satisfied
many of the stringent criteria mentioned by Thagard (1989)
for consistent architecture development. Specifically, the
same parameters, relationships, and weights are used, and
only the user knowledge base varied. And the variation in
knowledge bases was carefully controlled and based on
rigorous scoring fules.

The present work does not focus on differentiating
ADAPT-UNIX’s architecture from that used by ACT-R and
SOAR, two major models- of cognition. The three
architectures share many attributes including the use of
declarative and procedural knowledge. What distinguishes the
three models is how the role of problem solving context is
represented, and how it influences knowledge activation and
use. In SOAR, episodic knowledge is used to represent
actions, objects and events that are represented in the
modeled agent’s memory (e.g, Rosenbloom, Laird, &
Newell, 1991). This knowledge influences the use of
procedural and declarative knowledge by impacting the
activation of knowledge based on the context of historical
use. In ACT, the analogical process used to map similarities
between problem-solving situations simulates the interpretive
use of knowledge in a new context.

In the présent model, context is not represented as
historical memory or governed by an analogical process.
Rather, the influence of context is to constrain the spread of
knowledge activation based on the configural properties of
the current task situation using low-level associations. An
important strength of the present model is that it has been

applied to such a wide variety of cognitive phenomenon
using very few assumptions and very little parameter fitting.
In this case, a relatively parsimonious model has provided
reasonable fits to highly complex human computer
interactions as well as skill and knowledge acquisition.
'Future efforts include developing an  improved
comprehension-based model of working memory. The present
effort did not utilize all aspects of the long term memory
retrieval component of Kintsch's (1988) theory. This was
done because all instructions and prompts remained on the
screen in the empirical UNIX study. However, the
assumption that instructions in plain view are activated, used,
and remembered is clearly unwarranted. Therefore, next step
is to incorporate the retrieval model described by Kintsch
(1988) into this comprehension-based theory of leaming,
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