References
- Mathematical Methods of Game and Economic Theory J. P. Aubin
- Theory of Games and Statistical Decisions D. Blackwell;M. A. Girshick
- Mathematical Statistics, A Decision Theoretic Approach T. S. Ferguson
- Mathematical Economics T. Takayama
- Multiple Criteria Decision Making M. Zeleny
- Theory of Multiobjective Optimization Y. Sawaragi;H. Nakayama;T. Tanino
- Theorems of alternative, quadratic programs and complementarity problems in Variational Inequalities and Complementarity Problems F. Giannessi;R. W. Cottle(ed.);F. Giannessi(ed.);J. L. Lions
- New Trends in Mathematical Programming On Minty variational principle F. Giannessi
- Progress in Optimization On Relations between vector variational inequality and vector optimization problem G. M. Lee;X. Q. Yang(et al.)(eds.)
- J. Optim. Theory Appl. v.95 Vector variational inequality and multiobjective pseudolinear programming X. Q. Yang https://doi.org/10.1023/A:1022647607947
- Math. Methods of Oper. Res. v.53 Generalized properly efficient solutions of vector optimization problems D. E. Ward;G. M. Lee https://doi.org/10.1007/s001860100112
- J. Optim. Theory Appl. v.113 On relations between vector optimization problems and vector variational inequalities D. E. Ward;G. M. Lee https://doi.org/10.1023/A:1015364905959
- Convex Analysis and Nonlinear Optimization J. M. Borwein;A. S. Lewis
- Optimization and Nonsmooth Analysis F. H. Clarke
- Nonsmooth Analysis and Control Theory F. H. Clarke;Yu. S. Ledyaev;R. J. Stern;P. R. Wolenski
- Nondifferentiable Optimization V. F. Demyanov and L. V. Vasilev
- Theoretical Aspects of Industrial Design Sensitivity analysis in nonsmooth optimization B. S. Mordukhovich;D. A. Field(ed.);V. Komkov(ed.)
- Math. Program. v.67 Optimality conditions in mathematical programming and composite optimization J. P. Penot https://doi.org/10.1007/BF01582222
- Optimization v.31 Epiderivatives of the marginal function in nonsmooth parametric optimization D. E. Ward https://doi.org/10.1080/02331939408844005
- Optimization v.28 A chain rule for parabolic second-order epiderivatives D. E. Ward https://doi.org/10.1080/02331939408843917
- Set-Valued Anal. v.1 Calculus for parabolic second-order derivatives D. E. Ward https://doi.org/10.1007/BF01027635
- Set-Valued Analysis J. -P. Aubin;H. Frankowska
- J. Math. Anal. Appl. v.154 Second-order necessary conditions for optimality in nonsmooth nonlinear programming M. Studniarski https://doi.org/10.1016/0022-247X(91)90039-3
- J. Math. Anal. Appl. v.22 Proper efficiency and the theory of vector maximization A. M. Geoffrion https://doi.org/10.1016/0022-247X(68)90201-1
- J. Math. Anal. Appl. v.71 An improved definition of proper efficiency for vector minimization with respect to cones H. P. Benson
Cited by
- Relations between vector continuous-time program and vector variational-type inequality vol.16, pp.1-2, 2004, https://doi.org/10.1007/BF02936168
- Parameter-free duality models and applications to semiinfinite minmax fractional programming based on second-order ( $$\phi ,\eta ,\rho ,\theta ,{\tilde{m}}$$ ϕ , η , ρ , θ , m ~ )-sonvexities 2017, https://doi.org/10.1007/s12597-017-0323-8
- vol.18, pp.4, 2003, https://doi.org/10.4134/CKMS.2003.18.4.587
- Vector Variational Inequalities for Nondifferentiable Convex Vector Optimization Problems vol.32, pp.4, 2005, https://doi.org/10.1007/s10898-004-2696-5