DOI QR코드

DOI QR Code

ON SPECTRAL BOUNDEDNESS

  • Published : 2003.03.01

Abstract

For linear operators between Banach algebras "spectral boundedness" is derived from ordinary boundedness by substituting spectral radius for norm. The interplay between this concept and some of its near relatives is conspicuous in a result of Curto and Mathieu.

Keywords

References

  1. A primer on spectral theory B. Aupetit
  2. Studia Math. v.109 Spectrum preserving linear mappings in Banach algebras B. Aupetit;H. du T. Mouton
  3. Proc. Royal Irish Acad. v.96A Boardman’s theorem, vector-valued functions, and compact perturbations B. A. Barnes
  4. Arch. Math. (Basel) v.23 Derivations decreasing the spectral radius M. Bresar
  5. J. Funct. Anal. v.133 Derivations mapping into the radical Ⅲ M. Bresar;M. Mathieu https://doi.org/10.1006/jfan.1995.1116
  6. Proc. Amer. Math. Soc. v.123 Spectrally bounded generalized inner derivations R. E. Curto;M. Mathieu https://doi.org/10.2307/2161270
  7. A Silov boundary for systems?, Algebras in Analysis R. E. Harte
  8. Invertibility and singularity R. E. Harte
  9. J. Funct. Anal. v.66 Spectrum-preserving linear maps A. A. Jafarian;A. R. Sourour https://doi.org/10.1016/0022-1236(86)90073-X
  10. Banach Center Publ. v.30 Where to find the image of a derivation M. Mathieu
  11. Prace Matemayczne v.14 A characterization of the Silov boundary in function algebras W. Zelazko
  12. Studia Mat. v.44 On a certain class of non removable ideals in Banach algebras W. Zelazko

Cited by

  1. Extensions of Jacobson's Lemma vol.41, pp.2, 2013, https://doi.org/10.1080/00927872.2011.602274