DOI QR코드

DOI QR Code

What Do We Learn from Two-Dimensional Raman Spectra by Varying the Polarization Conditions?

  • Ma, Ao (Department of Chemistry, Brown University) ;
  • Stratt, Richard M. (Department of Chemistry, Brown University)
  • Published : 2003.08.20

Abstract

The signals obtained from the $5^{th}$-order (two-dimensional) Raman spectrum of a liquid can depend dramatically on the polarizations of the various light beams, but to date there has been no evidence presented that different polarization conditions probe any fundamentally different aspects of liquid dynamics. In order to explore the molecular significance of polarization we have carried out a molecular dynamics simulation of the $5^{th}$-order spectrum of a dilute solution of CS₂ in liquid Xe, perhaps the simplest system capable of displaying a full range of polarization dependencies. By focusing on the 5 distinct rotational invariants revealed by the different polarizations and by comparing our results with those from liquid Xe, a liquid whose spectrum has no significant polarization dependence, we discovered that the polarization experiments do, in fact, yield valuable microscopic information. With different linear combinations of the experimental response functions one can separate the part of the signal derived from the purely interaction-induced part of the many-body polarizability from the portion with the largest contributions from single-molecule polarizabilities. This division does not directly address the underlying liquid dynamics, but it significantly simplifies the interpretation of the theoretical calculations which do address this issue. We find that the different linear combinations differ as well in whether they exhibit nodal lines. Despite the absence of nodes with the atomic liquid Xe, observing the resilience of our solution's nodes when we artificially remove the anisotropy of our solute leads us to conclude that there is no direct connection between nodes and specifically molecular degrees of freedom.

Keywords

References

  1. Tanimura, Y.; Mukamel, S. J. Chem. Phys. 1993, 99, 9496. https://doi.org/10.1063/1.465484
  2. Mukamel, S.; Piryatinski, A.; Chernyak, V. Acc. Chem. Res. 1999,32, 145. https://doi.org/10.1021/ar960206y
  3. In Ultrafast Infrared and Raman Spectroscopy; Fleming, G. R.;Blank, D. A.; Cho, M.; Tokmakoff, A.; Fayer, M. D., Eds.; MarcelDekker: New York, U. S. A., 2001.
  4. Steffen, T.; Fourkas, J. T.; Duppen, K. J. Chem. Phys. 1996, 105,7364. https://doi.org/10.1063/1.472594
  5. Blank, D. A.; Kaufman, L. J.; Fleming, G. R. J. Chem. Phys. 2000, 113, 771. https://doi.org/10.1063/1.481851
  6. Kaufman, L. J.; Blank, D. A.; Fleming, G. R. J. Chem. Phys.2001, 114, 2312. https://doi.org/10.1063/1.1337042
  7. Kaufman, L. J.; Heo, J.; Fleming, G. R.; Sung, J.; Cho, M. Chem.Phys. 2001, 266, 251. https://doi.org/10.1016/S0301-0104(01)00251-8
  8. Kaufman, L. J.; Heo, J. Y.; Ziegler, L. D.; Fleming, G. R. Phys.Rev. Lett. 2002, 88, 207402. https://doi.org/10.1103/PhysRevLett.88.207402
  9. Astinov, V.; Kubarych, K. J.; Milne, C. J.; Miller, R. J. Dwayne Opt. Lett. 2000, 25, 853 https://doi.org/10.1364/OL.25.000853
  10. Astinov, V.; Kubarych, K. J.; Milne, C. J.; Miller, R. J. Dwayne Chem. Phys. Lett. 2000, 327, 334. https://doi.org/10.1016/S0009-2614(00)00819-8
  11. Kubarych, K. J.; Milne, C. J.; Lin, S.; Miller, R. J. Dwayne Appl. Phys. B - Laser Opt. 2002, 74, 107 https://doi.org/10.1007/s00340-002-0908-6
  12. Kubarych, K. J.; Milne, C. J.; Lin, S.; Miller, R. J. Dwayne J. Chem. Phys. 2002, 116, 2016. https://doi.org/10.1063/1.1429961
  13. Golonzka, O.; Demirdoven, N.; Tokmakoff, A. (preprint); Golonzka, O.; Demirdoven, N.; Khalil, M.; Tokmakoff, A. J. Chem. Phys. 2000, 113, 9893. https://doi.org/10.1063/1.1330236
  14. Frenkel, D.; McTague, J. P. J. Chem. Phys. 1980, 72, 2801. https://doi.org/10.1063/1.439429
  15. Geiger, L. C.; Ladanyi, B. M. J. Chem. Phys. 1987, 87, 191 https://doi.org/10.1063/1.453614
  16. Geiger, L. C.; Ladanyi, B. M. J. Chem. Phys. 1988, 89, 6588. https://doi.org/10.1063/1.455381
  17. Geiger, L. C.; Ladanyi, B. M. Chem. Phys. Lett. 1989, 159, 413. https://doi.org/10.1016/0009-2614(89)87509-8
  18. Stassen, H.; Steele, W. A. J. Chem. Phys. 1999, 110, 7382. https://doi.org/10.1063/1.478640
  19. Ma, A.; Stratt, R. M. Phys. Rev. Lett. 2000, 85, 1004. https://doi.org/10.1103/PhysRevLett.85.1004
  20. Ma, A.; Stratt, R. M. J. Chem. Phys. 2002, 116, 4962. https://doi.org/10.1063/1.1453401
  21. Ma, A.; Stratt, R. M. J. Chem. Phys. 2002, 116, 4972. https://doi.org/10.1063/1.1453402
  22. Phys. Rev. E v.63 Denny, R. A.;Reichman, D. R. https://doi.org/10.1103/PhysRevE.63.065101
  23. Denny, R. A.; Reichman, D. R. Phys. Rev. E 2001, 63, 065101 https://doi.org/10.1103/PhysRevE.63.065101
  24. Denny, R. A.; Reichman, D. R. J. Chem. Phys. 2002, 116, 1987. https://doi.org/10.1063/1.1431279
  25. Cao, J. S.; Yang, S. L.; Wu, J. L. J. Chem. Phys. 2002, 116, 3760. https://doi.org/10.1063/1.1445746
  26. Saito, S.; Ohmine, I. J. Chem. Phys. 1998, 108, 240. https://doi.org/10.1063/1.475375
  27. Okumura, K.; Tanimura, Y. J. Chem. Phys. 1997, 107, 2267. https://doi.org/10.1063/1.474604
  28. Tokmakoff, A.; Lang, M. J.; Jordanides, X. J.; Fleming, G. R.Chem. Phys. 1998, 233, 231. https://doi.org/10.1016/S0301-0104(98)00026-3
  29. Steffen, T.; Duppen, K. Chem. Phys. Lett. 1998, 290, 229. https://doi.org/10.1016/S0009-2614(98)00469-2
  30. Steffen, T; Meinders, N. A. C. M.; Duppen, K. J. Phys. Chem. A 1998, 102, 4213 https://doi.org/10.1021/jp973422c
  31. McMorrow, D.; Thantu, N.; Melinger, J. S.; Kim, S. K.; Lotshaw, W. T. J. Phys. Chem. 1996, 100, 10389. https://doi.org/10.1021/jp9605717
  32. Gray, C. G.; Gubbins, K. E. Theory of Molecular Fluids, Vol. 1;Clarendon Press: Oxford, U. K., 1984; p 577.
  33. J. Chem. Phys. v.107 Murry, R. L.;Fourkas, J. T. https://doi.org/10.1063/1.475269
  34. Kim, J.; Keyes, T. Phys. Rev. E 2002, 65, 061102. https://doi.org/10.1103/PhysRevE.65.061102
  35. Murry, R. L.; Fourkas, J. T. J. Chem. Phys. 1997, 107, 9726. https://doi.org/10.1063/1.475269
  36. Murry, R. L.; Fourkas, J. T.; Keyes, T. J. Chem. Phys. 1998, 109, 7913. https://doi.org/10.1063/1.477439
  37. Saito, S.; Ohmine, I. Phys. Rev. Lett. 2002, 88, 207401. https://doi.org/10.1103/PhysRevLett.88.207401
  38. Jansen, T. I. C.; Snijders, J. G.; Duppen, K. J. Chem. Phys. 2000, 113, 307 https://doi.org/10.1063/1.481795
  39. Jansen, T. I. C.; Snijders, J. G.; Duppen, K. J. Chem. Phys. 2001, 114, 10910. https://doi.org/10.1063/1.1374959
  40. Steffen, T.; Duppen, K. Chem. Phys. Lett. 1997, 273, 47. https://doi.org/10.1016/S0009-2614(97)00583-6
  41. Steffen, T.; Duppen, K. Chem. Phys. 1998, 233, 267. https://doi.org/10.1016/S0301-0104(98)00083-4
  42. Ma, A.; Stratt, R. M. J. Chem. Phys. 2003 in press.
  43. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, U. K., 1987; pp 20-22.
  44. Sherwood, A. E.; Prausnitz, J. M. J. Chem. Phys. 1964, 41, 429. https://doi.org/10.1063/1.1725884
  45. Fincham, D. Molecular Simulation 1993, 11, 79. https://doi.org/10.1080/08927029308022178
  46. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, U. K., 1987; pp 20-22. chap. 3.
  47. Barojas, J.; Levesque, D.; Quentrec, B. Phys. Rev. A 1973, 7, 1092. https://doi.org/10.1103/PhysRevA.7.1092
  48. Andersen, H. C. J. Comp. Phys. 1983, 52, 24. https://doi.org/10.1016/0021-9991(83)90014-1
  49. Deng, Y., Ph. D. Thesis; Brown University: 2002.
  50. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;Clarendon Press: Oxford, U. K., 1987; pp 171
  51. Chernyak, V.; Mukamel, S. J. Chem. Phys. 1998, 108, 5812. https://doi.org/10.1063/1.475992

Cited by

  1. Two-dimensional Raman spectroscopy of Lennard-Jones liquids via ring-polymer molecular dynamics vol.153, pp.3, 2003, https://doi.org/10.1063/5.0015436