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The signals obtained from the 5th-order (two-dimensional) Raman spectrum of a liquid can depend dramatically 
on the polarizations of the various light beams, but to date there has been no evidence presented that different 
polarization conditions probe any fundamentally different aspects of liquid dynamics. In order to explore the 
molecular significance of polarization we have carried out a molecular dynamics simulation of the 5th-order 
spectrum of a dilute solution of CS2 in liquid Xe, perhaps the simplest system capable of displaying a full range 
of polarization dependencies. By focusing on the 5 distinct rotational invariants revealed by the different 
polarizations and by comparing our results with those from liquid Xe, a liquid whose spectrum has no 
significant polarization dependence, we discovered that the polarization experiments do, in fact, yield valuable 
microscopic information. With different linear combinations of the experimental response functions one can 
separate the part of the signal derived from the purely interaction-induced part of the many-body polarizability 
from the portion with the largest contributions from single-molecule polarizabilities. This division does not 
directly address the underlying liquid dynamics, but it significantly simplifies the interpretation of the 
theoretical calculations which do address this issue. We find that the different linear combinations differ as well 
in whether they exhibit nodal lines. Despite the absence of nodes with the atomic liquid Xe, observing the 
resilience of our solution's nodes when we artificially remove the anisotropy of our solute leads us to conclude 
that there is no direct connection between nodes and specifically molecular degrees of freedom.
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Introduction

Though to date only one liquid, liquid CS2, has been 
persuaded to divulge its two-dimensional (5-th order) Raman 
spectrum1-4 in the laboratory,5-11 neat liquid CS2 is not 
necessarily the simplest choice for learning how to interpret 
such spectra. The same significant polarizability that no 
doubt contributes to the strength of the experimental signals 
also mixes the responses from the individual molecular 
polarizabilities with the more collective responses derived 
from the various orders of induced polarizabilities.12-14 
Moreover, the fact that the rotations and translations of the 
CS2 molecules couple strongly with one another, as well as 
to the polarizability itself, makes it difficult to ascribe a 
simple dynamical significance to any of the spectroscopic 
features.15

It was with these considerations in mind that we and a 
number of other groups decided to begin our analysis of 5-th 
order Raman spectra by thinking about the spectrum 
expected from an atomic liquid, liquid Xe.16-20 The ability to 
concentrate on purely translational motion and on a single 
term in the dipole-induced-dipole series17 meant that we 
could focus on the more basic question of what the 5-th 
order signal actually tells us about liquid dynamics. It could 
have been the case, for example, that the signal arose 
primarily from nonlinear coupling to the many-body 
polarizability,16,17,21 a natural consequence in a nonlinear 
Raman experiment, but not an especially revealing piece of 

information about liquid motion. What we found instead18 
was that it was largely the intrinsic anharmonicity of the 
molecular dynamics that generated the signal in this 
example.22-24 We found, in addition, that this anharmonicity 
was surprisingly weak: it was amply capable of causing pure 
dephasing of the liquid's instantaneous normal modes, but it 
seemed to be insufficient to destroy the essentially harmonic 
definitions of the modes.18

Of course, an atomic liquid is a rather special case. Atoms 
have neither the possibility of an anisotropic polarizability 
nor the opportunity to undergo rotational motion. To help us 
learn about the kinds of effects that we might expect to see in 
a specifically molecular liquid -- without bringing in all of 
the potential complications -- we therefore decided to examine 
the simplest step up from an atomic liquid: an infinitely 
dilute solution of CS2 dissolved in liquid Xe.25 What makes 
this case particularly straightforward is that the molecular 
polarizability of CS2 is sufficiently larger than that of Xe

2a(CS2) = a(CS2) l + 27(CS2) Q, (1)

_ 3 1 _
Q = 2ee - 2i,

a(Xe) = a(Xe) l, (2)

where a(CS2) = 8.95 A3 and y(CS2) = 10.05 A3 are the 
isotropic and anisotropic components of CS2’s polarizability,13 
a(Xe) = 4.11 A3 is the isotropic (and only) component of 
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Xe’s polarizability,26 and e is a unit vector directed along the 
CS2 bonding axis, that the many-body polarizability of the 
solution n is well approximated by the sum of the molecular 
polarizability of the CS2 and the leading term in the induced 
polarizability.13,17

n = a(CS2) + n induced, (3)

N

ninduced = a(CS2) • £ T (r”) • a(Xe)
J = 1

N

+ a( Xe )• £ T (Rj )• a (CS2). (4)
J = 1

Here, the center of mass of the CS2 molecule is assumed to 
be located at r0, the sums are over the Xe solvent atoms 
located at rj = r° 一 码・(J = 1, ..., N), and the dipole-dipole 
tensor is defined to be T (r) = (3rr - 1 )/r3.

The fifth-order signal itself is still an involved function of 
this polarizability. In its most basic form, the experiment 
involves subjecting the sample to two pairs of visible light 
pulses separated by a time interval t1, followed by a 
measurement of the light scattering from a fifth visible pulse 
a time t2 later.1-3 In the limit of purely classical motion, the 
response function for this scattering can be written as an 
ensemble average16,17,21,27

R(5)( t1,t2) = <((fi( t1 +12), n( t1)}, n( 0 )}〉， (5)

involving the Poisson brackets of the many-body polariz
ability evaluated at the three different times relevant to the 
experiment. If the coordinates and momenta of the species in 
the liquid are designated as rj卩 and p* respectively, with J = 0 
referring to the sole CS2 molecule, and 卩 denoting all of the 
intramolecular coordinates (x, y, and z for each Xe and for 
the CS2 center of mass along with the orientational 
coordinates for CS2), then the Poisson brackets we need are 
of the form

( A (t), B( t')}=

£ £「dA(t- dB(t，- _ dA(t) dB-f) 1 
j = 0 i Ldrj^- 0) dp*- 0) dp*- 0) dj- 0)」.

Thus the experiment examines a kind of second-order 
sensitivity of the polarizability to perturbations of the initial 
conditions, (r(0), p(0)).17

Although introducing molecules to our liquid does add a 
level of complexity to this already complex scenario, a 
feature of molecular liquids that more than counterbalances 
any difficulties is that the presence of anisotropic molecules 
affords us an additional experimental handle: the choice of 
polarization conditions.28-30 As one might expect from the 
fact that the response function, Eq. (5), depends on 6 
different tensor indices (two for each appearance of n), the 
fifth-order Raman spectrum of neat liquid CS2 exhibits a 
dramatic dependence on polarization conditions.6,8,31,32 Just 
what molecular interpretation one should place on this 
dependence, though, has never been clear. The first goal of 

the present work is therefore to see if examining our 
conceptually simpler mixed system can help us understand 
the different dynamical signatures of the various polarizations.

Once we are armed with such results, there are other 
aspects of the CS2 experiments that we should be able to 
consider. A consistent prediction from both Xe and CS2 

molecular dynamics simulations is a ridge along the t2 axis 
(t1 = 0).17,31,32 Although an unambiguous experimental 
observation is awkward because of hyperpolarizability and 
finite-pulse-duration effects,6,7,33 it has been pointed out that 
this region is conceptually intriguing. If we think of the 
liquid's ultrafast dynamics as a superposition of various 
intermolecular vibrations, the suggestion is that we should 
regard measurements along this axis as a direct measurement 
of vibrational population relaxation.6,19,21,34 Indeed, WKB 
instantaneous-normal-mode calculations on Xe 一 which 
allow for pure dephasing but manifestly omit such energy 
relaxation mechanisms 一 exhibit a strikingly prolonged 
response along this axis.18 Our current work should allow us 
to see how universal this t2 ridge phenomenon is and, to the 
extent the behavior is universal, to see which molecular 
degrees of freedom contribute to it the most.

The other noteworthy feature of the most recent experimental 
and theoretical studies of neat liquid CS2 is the presence of 
nodal lines 一 lines in the (t1, t2) plane where the response 
function changes sign.8,31 Since calculations on Xe, an atomic 
liquid, do not show any such nodal lines,17 it is possible that 
these nodes signify something uniquely molecular about the 
dynamics or the coupling. But it is also conceivable that it is 
the relatively low polarizability of Xe (which makes the 
leading term in its dipole-induced-dipole series so dominant) 
that suppresses the nodes 一 and that some other atomic 
liquid could, in principle, have nodal lines. Here again, the 
ability to examine the CS2/Xe mixture gives us a chance to 
gain some insight into the molecular origins of the spectra.

This paper, then, will present the results of a molecular 
dynamics simulation of the 5-th-order Raman response for 
CS2 dissolved in liquid Xe. Section II sets out the details of 
the model, the precise form of the response functions we 
compute, and the algorithm required to propagate our Poisson 
brackets. The results from our simulation are described in 
Sec. III, and we conclude in Sec. IV with a summary of what 
one can and cannot discern from such a simulation. A future 
publication will round out the picture by presenting the 
results of a traditional and an anharmonically corrected 
instantaneous-normal-mode analysis performed on this same 

35 system.35

The Simulation Model and Methods

The model we consider consists of a single rigid CS2 

molecule, regarded as three collinear Lennard-Jones atoms, 
and 29 Xe atoms, also taken to interact via Lennard-Jones 
potentials. The parameters used are standard ones for CS2 

and Xe along with those from the standard Lorentz- 
Berthelot combining rules for the CS2/Xe interactions (Table 
1).13,36,37 The system was equilibrated at a reduced density of
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Table 1. Model parameters for our simulation of CS2 in liquid Xea

Atom o(A)b £/kB (K)b m (amu)c

C 3.35 51.2 12.01
S 3.52 183.0 32.06

Xe 4.099 222.3 131.3 where we have adopted the definitions
aThe potential energy of the system consists of a sum of Xe-Xe pair 
potentials UXeXe(r) plus a Xe-X pair potential UXeX(r) for each atom X = 
S, C or S in CS2. The pair potentials between atoms of species A and 
species B are given by UAB(r) = 4&\3[(6切/尸)12-(。屈/尸)6)]. The C-S 
distance in CS2 is fixed at 1.57 A. ”Lennard-Jones parameters for atoms 
interacting with other atoms of the same kind (i.e., for an atom of species 
A,(J= OAa, £ = £aa). For interactions between atoms of species A and B, 
we use the values OAb = 1/2(Oa + OB) and £ab =」£匚島-cAtomic mass.

3
poXXe = 0.8 and a reduced temperature 】豹丁/£乂金乂@ = 1.0, 
well within the liquid range, and we carried out an NVE 
simulation to trace the time evolution of the many-body 
polarizability (which was specified as we indicated in the 
previous section). The specifics of calculating the 5th order 
spectrum are described in more detail below.

A. The response function and its tensor invariants. 
Although we could, in principle, base our calculations on the 
formal expression for the classical 5th order response 
function shown in Eq. (5), we can avoid having to compute a 
nested set of Poisson brackets by transforming the ensemble- 
averaged expression so that it involves just a single Poisson 
bracket. The transformation we use here is one derived in an 
earlier paper17

R(5)( t1, t2)=伙n( 0)(n( t1), n( t1 +12)｝〉

=呻(-t1)(n( 0), n(t2)｝〉， ⑺

a version particularly well-suited to numerical calculation in that 
it avoids computing small differences between averaged quanti
ties. Here g = (^bT)-1.

Evaluating the remaining Poisson bracket still requires 
that we look at the time evolution of the derivatives of the 
many-body polarizability with respect to initial conditions, 
Eq. (6), a process that can produce numerically awkward 
divergences if we regard the CS2 orientation angles 0 and 0 
as being among the time evolving coordinates. However the 
problem can be removed simply by propagating the three 
Cartesian components of the CS2 orientation unit vector e 
rather than propagating 0 and 0. It is therefore convenient to 
be able to express the Poisson bracket in terms of both the 
3N+5 original initial coordinates &卩(0) and a new set of 
3N+6 coordinates at time t, Rk%(t). As before we take j, k = 
0, ..., N to label the solute and solvent molecules, and we 
use 卩=% = x, y or z for the solute center-of-mass and solvent 
coordinates, but instead of having the solute orientational 
coordinates be just 匚中=0, 0, we characterize the orientation 
by R°x = ex, ey, ez. In particular, using the chain rule we write

N

(n(0), n (t)｝ = £ £ n加(0)nkx(t)JRj(t)
j, k =0卩庆

遍(0) = d n (0)/d j (0), nkx (t) = d n (t)/d Rkx (t),
(8) 

which expresses the polarizability dynamics in terms of a 
fundamental Poisson bracket, the Jacobian17

J：Xm(t)= dRkX(t)/dPm(°)， (9)

,加，饥=

("山,M(r。、暈(=0,]丄=x,y,z)

0 , I0 (j = 0, 卩=0)
0 , Isin2 00 (J = 0, 卩=0、）

（r山， m （弓"丄 (j 丰 0, 卩=x ,y,z)

. (10)

The other issue mitigating against doing our calculations 
using Eq. (5) as it is written concerns the 6 unspecified 
tensor indices (시，b, c, d, e, f) = x, y or z. There are, in fact, 
only 5 rotationally invariant combinations of the R^^bcdef 

response functions: The only rotationally invariant 
combinations of the many-body polarizability tensors at 
three different times involve the trace (Tr), pair product (PP), 
and triple product (TP):28,29

Tr( n (t)) = £Haa (t)
a

pp( n (t), n (t')) = £nflb (t) n.” (t')
a, b

tp(n (t), n (t'), n (t")) = £ n.” (t)n“ (t') n”。(t").
시,b,c (11)

So, the only rotationally invariant observables stemming 
from Eq. (5) (or for that matter, from Eq. (7)) are of the form

TP(0, 1, 2)三 TP(n (0), n (t1), n (t1 + t2))

pp(0, 1) T(2)三 pp(n (0), n (t1)) Tr(n (t1 + t2))

PP(1,2) T(0)三 PP(n (t1), n (t1 + t2)) Tr(n (0))

PP(0, 2) T(1)三 PP(n (0), n (t1 + t2)) Tr(n (t1))

T(0) T(1) T(2)三 Tr(n (0)) Tr(n (t1)) Tr(n (t1 + t2)). (12)

The actual calculations of Eq. (7) are therefore performed 
for just these 5 invariants. Results for specific experimental 
polarizations (such as abcdef = zzzzzz) can then be computed 
from simple linear combinations of the invariants.28 Aside 
from minimizing the redundancy of the calculations, we 
have shown in our previous work that this kind of approach 
has the side benefit of providing a valuable extra measure of 
averaging for the computed signals.16,17

B. Evaluating the fundamental Poisson bracket. The 
equations of motion for the fundamental Poisson bracket are 
most easily derived from the second derivative of Eq. (9)

Jj (t) = dR kX( t) Id]* (0), (13)

which, itself, can be written in terms of the time-dependent 
dynamical matrix (the Hessian of the potential energy V)
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Dkx，k1%1^t)= d 卩/자敞체%，- (14)

For translational components X, the equations of motion are 
simply

勇冲(t) = - + £ D1XJX(t、)需：X屈(t) (X=X,y, z). (15) 
mi j X ：

where mi is the mass of molecule i, and the index : runs 
over all 3^+6 of our translational and rotational coordinates.

A more compact notation arises by labeling the 3N+6 
dimensional vectors with arrows (R), 3N+5 dimensional 
vectors with tildes (r), and matrices by the appropriate pairs 
of these labels. If we define the (3N+6) x (3N+6) molecular 
mass matrix M, for example, by

(M)庭：'A 呻两以,::'=X'y,z , (16)

— , 1 18逆8歸)8：,：，, x or ：丰 X j，,z 

and define the elements of the Jacobian (J) and dynamical 
(D) matrices by Eqs. (13) and (14), then Eq. (15) can be 
written

J (t)trans = - [MT^ ]trans • D (t) • JRP (t), (17) 

where the subscript “trans” refers to the (3N+3) x (3N+6) 
matrix containing just the translational (row) components.

However the dynamics of the rotational components of the 
Poisson bracket, ： = ex, ey, ez are somewhat more involved 
because the equation of motion for the rotational coordinates 
themselves are a bit more complicated. Denoting 3-vectors 
by boldface characters, we can express the rotational 
dynamics of our linear solute e(t) in terms of the torque g 
and the moment of inertia I,38,39

1… dVe = i(1-ee)• g - (e • e)e, g =-诙. (18)

Since the derivatives with respect to initial momenta involve 
the rotational (row) components of the Jacobian and 
dynamical matrices

dg(t) — _ D (t) •产(f)
dp(0) = _ D(t)rot J (t)
de (t)—卢p de (t)—停------- = J (t)rot,   = J (t)ro
dp(0) Z dp (0) Z rot, (19)

the equivalent to Eq. (17) for the rotational (row) 
components of our Poisson bracket becomes

J (t)rot = - I (1-ee) . D (t)rot • JRP (t)

-I g(t) . [e(t) JRP (t)rot + JRP (t)rot e(t)]

-[e(t) • e(t) ] J? (t)rot - 2[fRp (t)rot • e(t) ]e(t).
~ ~ (20)

Equations of motions such as those of Eq. (17) lend 
themselves naturally to numerical solution by conventional 

molecular dynamics algorithms. In schematic terms, since 
D (t) = D [R (t)], this equation has the form of a simple 2nd 
order differential equation for a matrix J (t)

J(t) = F [J(t); R (t), R (t)], (21)

coupled to the trajectory R (t) of our liquid. Hence we can 
propagate the elements of J (t) with time step 8, just by using 
the central difference (Verlet) algorithm39

J (t + 8) = 2 J (t) - J (t - 8) + 8 F (t),

F(t)三 F [J(t); R (t), R(t)]. (22)

The corresponding rotational component equations of 
motion, Eq. (20), are of a slightly different form

J(t) = G [J(t); R (t), R (t)] + M[R (t), R(t)] • J(t). (23) 

but if we express both the “velocity” and the “acceleration” 
in central difference form

we find that we can propagate Eq. (23) in much the same 
fashion

J (t + 8) = (1 - 8 M (t))-1

•[2 J (t) - (1 + 8 M (t)) J (t - 8) + 8 G (t)]. (24)

Moreover for us, the 3 x 3 matrix M = -2ee . Since e • e = 0,

M • M = M • M • M =…=0,

so the terms involving M are just
8 -1 8

(1 - 8 M(t)) = (1 + 8 M(t)) = 1 - 8e(t) e (t). (25)

Both portions of the JRp (t) trajectory can now be launched 
simply by using the initial conditions. Since JRp (0) = 0 and 
it is easy to find JRp (0), we can initiate both Eqs. (22) and 

(24) by making use of the expresssion

JR (-8) = - 8 JR (0) + 2 8J (0), (26)

[ Jp (이:, 犀 = [M"x, k： 8：q , (X = X, y, z)~ —A
[ J (이:, 犀 = 0 , (X = X, y, z)

[ J p (이:, 加 = 沁0 스:0) (X# X,y,z)

[ J (이:, kn = -2[ J p (0)rot • e ( 0 ) ]e(0), (X 丰 X ,y,z )
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where the values of the second time derivatives follow from 
Eqs. (17) and (20).

Parenthetically, we should also point out that while this 
scheme for propagating the Jacobian is free of the diver
gences we alluded to earlier -- divergences triggered by 0(f) 
passing near 0 or n during the course of the trajectory -
these special values can still lead to divergences at the start 
of the trajectory. Such problems can be avoided by 
transforming the coordinate system used to define e

e = (sin0 cos。, sinOsinQ cosO) T
e = (cos O', sin O sin 矿，sin O' cos。')

whenever the initial angle 0 is near 0 or n.40
C. Computational details. The dynamics of the solution 

itself was simulated in conjunction with that of the 
fundamental Poisson bracket by using the velocity Verlet 
algorithm for solute and solvent translation and the Rattle 
algorithm to describe the solute rotation.39,41,42 All the 
simulations employed a time step of 8 = 0.001 TLJ(Xe)= 
3.47 fs, with the initial liquid structure equilibrated for 104 
time steps from a zero-translational-order-parameter43 liquid 
configuration before taking any data.

All response functions reported here were averaged over 
106 statistically independent liquid configurations.

Results

We begin our presentation by looking at the variety of 5 th- 
order responses that we can obtain from our solution, 
Figure 1.

Just as in the neat liquid CS2, changing polarization 
conditions for our simpler system does indeed produce some 
noticeable changes in the response functions.6,8,31,32 The all
parallel (zzzzzz) polarization yields a kidney shape quite 
similar to that found with neat liquid Xe,16,17 but with a peak 
at (t1 - 140 fs, t2 - 170 fs), much closer to the t1 = t2 echo line 
than we saw in pure Xe (t1 - 30 fs, t2 - 330 fs). Rotating the 
final two polarizations to the magic angle (resulting in the 
mmzzzz polarization) generates a peak and a lengthy ridge 
along the t2 axis, with a distinct, mostly vertical, nodal line 
near t1 = 200-250 fs, and an overall shape remarkably similar 
to that seen in Saito and Ohmine’s simulation of the mmzzzz 
response for neat liquid CS2 (despite the absence of a node in 
the latter).31 The yyzzzz polarization shows yet another set 
of motifs. The t2 ridge and the associated node are now 
combined with valley along the echo direction featuring a 
minimum at (t1 - 200 fs, t2 - 210 fs).

The diversity of these plots not withstanding, the most 
fundamental results from this study are not going to be these 
spectra, but the five rotational invariants described by Eq. 
(12). We therefore turn in Figure 2 to the response functions 
appropriate for each of these.

As this figure makes quite clear, the reason that different 
polarization conditions give rise to such different spectra is 
that the invariants from which they are constructed are so 
markedly different. Both of the invariants involving T(2) (the 
trace of the polarizability at time t1 + t2) have an extended

Figure 1. Molecular dynamics simulations of the 5th-order Raman 
response functions R；bcdef(t1, t2) for an infinitely dilute solution of 
CS2 in liquid Xe. The three panels display the results for three 
different choices of polarization conditions (the tensor indices a, b, 
c, d, e, f); “m” denotes the magic angle. Contour plots shown in this 
and all succeeding figures have 15 equally spaced contours 
between the minimum and maximum values, with negative values 
indicated by dashed lines.

1
1

1 '
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ridge along the t2 axis. By contrast, the TP invariant (the one 
involving the triple product of the polarizability at the times 
0, t1, and t1 +12) and the PP(0, 2) T(1) invariant both have a 
sharp peak located a short distance along the echo (t1 = t2)
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Figure 2. Molecular dynamics simulation results for the five different rotational invariants entering into the 5th-order Raman signal for our 
solution of CS2 in liquid Xe. In our notation (0, 1,2) refers to the many-body polarizabilities at times 0, ti and ti + t2, respectively, T refers to 
a trace, PP to a pair-product over two of the polarizabilities, and TP to a triple product over all three of the polarizabilities. The explicit 
connections between these invariants and the response functions shown in Fig. 1 are detailed in Table 2.

diagonal. The remaining invariant PP(1, 2) T(0) is different 
still; it has a much broader peak located directly on the t2 

axis. Of course, the other intriguing feature of these 
invariants has to do with the presence of nodal lines. Out of 
all the invariants, we note that only those involving T(2) 
display these nodes.

So what distinguishes these invariants physically? Looking 
back at Eqs. (3) and (4) tells us that the many-body 
polarizability at each time is the sum of a contribution from 
the CS2 solute itself, 亓彻勇=S(CS2) - a tensor which is 
fixed in the molecular frame and whose dynamics can 
therefore only arise from CS2 reorientation - and an 
interaction-induced term ^induced - which will evolve 
whenever either the CS2 rotates or the solute-solvent center 
of mass distance changes. The trace of 宜彻勇,though, cannot

Table 2. Response function for different choices of polarization 
conditionsa

c T(0)T(1)T(2) PP(0,1)T(2) PP(0,2)T(1) PP(1,2)T(0) TP(0,1,2)
z 1/105 2/105 2/105 2/105 8/105
m 1/15 2/15 0 0 0
y 1/35 2/35 -1/105 -1/105 -4/105
aThe contributions of each of.the 5 rotational invariants to the 5山-order 
Raman response function R^cczzzz (t1, t2) for different choices of the final 
(t1 + t2) polarization "c”. Here “m” denotes the magic angle. Adopted 
from refs. 28, 29.

evolve at all; it is fixed at 3a(CS2) = 3(8.95) A3. The end 
result is that any invariant involving the trace of a single 
many-body polarizability at some time t looks only at the 
induced portion of the polarizability, at least at that time.44 
The most extreme example, the triple-trace invariant 
T(0)T(1)T(2), sees nothing but interaction-induced contribu
tions to the 5th order spectrum. As a consequence, the 
numerical contribution of this invariant is far smaller than 
that of any of the other invariants (and, in fact, may be safely 
neglected for our system).

Given this analysis it is hardly surprising that the invariant 
that contributes the most to the overall spectrum is the triple 
product, TP(0, 1, 2) (the one without any traces over 
individual polarizabilities). Quite generally, whenever the 
substantial dynamics of the purely molecular polarizability, 
Hmol (t), is not hidden by symmetry considerations, we 
expect it to dominate the spectrum of our solution.45 We can 
confirm this expectation quite simply by partitioning the 
triple-product spectrum into the component coming from the 
solely molecular terms, the component stemming from the 
purely interaction-induced terms, and the cross terms, Figure 
3. Despite the fact that the latter two contributions 
outnumber the pure molecular term 7 to 1, the former - 
which represents purely rotational dynamics - accounts for 
75% of the total triple-product response.

The physical importance of these observations is that we
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ti (ps)

Figure 3. Contributions to the TP invariant for our solution of CS2 

in liquid Xe. (a) Molecular dynamics simulation of the complete 
invariant. (b) The contribution from purely single-molecule 
polarizabilities. (c) The contribution from the purely interaction- 
induced components. Contributions from the remaining single- 
molecule/interaction-induced cross terms are not shown.

can now begin to point to the 5th-order Raman signatures of 
various contributions to the dynamics. Pure reorientational 
motion evidently shows up in this system as a sharp peak 
located about 150 fs along the echo diagonal with crescent
shaped wings appearing symmetrically along both the t1 and

t2 axes. We know the precise appearance of the interaction- 
induced part of the 5th-order spectrum as well. But it is worth 
remembering that this last information is not necessarily a 
help in interpreting the underlying molecular motions. The 
label “interaction-induced” refers to a component of the 
coupling of the system to the spectroscopic signal; it does 
not, in itself, imply any kind of dynamical characterization. 
Indeed, as we have mentioned, both rotation and translation 
could contribute to its time evolution in this example. 
Nonetheless it may be significant that this spectrum has a 
noticeable asymmetry, with almost all of the response 
concentrated near the t2 axis. This same motif shows up in 
anharmonic instantaneous-normal-mode treatments of neat 
liquid Xe.18 Since these treatments allow for dephasing of 
effectively independent dynamical degrees of freedom, but 
ignore the possibility of dynamical mode-mode coupling, 
the interaction-induced portion of our solution spectrum 
may very well be reporting on the component of the 
dynamics that displays an independent-mode behavior.18,19

Interestingly, these same figures also place us in a position 
to say something about the significance of nodal lines. 
Although it is hard to see on the scale of the figure, and 
despite the fact that the full triple-product invariant does not 
exhibit a node, the induced portion of this invariant actually 
has a nodal line close to the t2 axis. Perhaps the most 
important conclusion to draw from this fact is that nodes are 
subtle. The presence of a node in one spectrum and the 
absence in another might not be all that physically 
significant. Nodes might simply appear and disappear with 
small shifts in the delicate cancellations among the various 
contributions to the spectrum.

We can elaborate on this point by looking in a little more 
detail at the relationship between our solution and neat liquid 
Xe. The same triple product is the only nonzero tensor 
invariant for the 5th-order Raman spectrum of neat liquid Xe 
(through the leading order in the dipole-induced-dipole 
series) and the entire Xe spectrum is interaction-induced.17 
This spectrum, however, does not have any nodal lines. Is 
there something about the difference between an atomic 
liquid and a molecule dissolved in an atomic liquid that 
generates a node in the latter but not in the former?

It is easy enough to examine each of the possible distinc
tions between these examples, Figure 4. Molecules have 
anisotropic intermolecular interactions, which affects the 
liquids structure and dynamics, as well as an anistropic 
polarizability, which influences the coupling of that dynamics 
to the spectroscopic response. Suppose we simply turn off 
the polarizability anisotropy of our solute. When we do so 
(Fig. 4a), we find that the interaction-induced part of the 
triple-product invariant has an even more pronounced node. 
If we then make this artificial CS2 solute even more atom
like by making the potential nearly isotropic, say by 
shrinking the C-S distance to 1% of its physical value (Fig. 
4b), we find that the node still remains robust.

At this point, though, we have erased all the molecular 
features of our solute. The lack of polarizability anisotropy 
means that the solute’s orientation can no longer have any
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Figure 4. The origin of the nodal lines in the 5th-order Raman 
spectrum of our solution of CS2 in liquid Xe. We start by 
considering the total induced contribution to the TP rotational 
invariant, Fig. 3(c) (which has a barely visible node in the upper 
left-hand corner). (a) The total induced contribution to this 
invariant with the polarizability anisotropy of the CS2 solute (y in 
Eq. (1)) set to zero. (b) The total induced contribution to the 
invariant when the CS2 solute has both zero polarizability 
anisotropy and its C-S distances reduced to 0.0157 A. The pictures 
in the upper right hand corners of panels (a) and (b) represent the 
shape of the solute for each case, correctly drawn to scale.

direct relevance to the spectroscopy, and the isotropy of the 
potential interactions implies that the orientation cannot even 
influence the spectrum indirectly by any coupling to the 
intermolecular translation. Hence, the only difference 
remaining between neat liquid Xe and our imaginary Xe 
solution lies in the many-body character of the polarizability 
in the neat liquid. While the solution polarizability stems 
from just the coupling of the solute to each of the N solvents,

N …
^-induced(solution) = 2 a a £ T(r0j),

with Ou and Ov the polarizabilities of the CS2 solute and Xe 
solvent, respectively, the neat liquid has a contribution from 
every pair of solvents in the liquid:

induced (neat liquid) = («v)2
N _ 
£ T(j).

厶巻 1

The response function of the neat liquid will therefore 
contain cross terms absent in the solution. It is these cross 
terms that must be responsible for suppressing the nodal 
lines -- which we would predict would otherwise appear 
even in an atomic liquid.

Concluding Remarks

The somewhat specialized systems we have chosen to 
investigate via two-dimensional Raman spectroscopy seems 
to have presented us with useful case studies. Because we 
were able to compare two closely related liquids, a single
component atomic liquid and the same liquid with a dilute 
molecular solute, we found that we were able to draw a 
number of conclusions about the features of this spectros
copy that directly reflect the anisotropy of molecules. In 
particular, we now know that it is at least possible to attach a 
microscopic significance to the signals generated under 
different polarization conditions.

The key ingredients in this analysis were the rotational 
invariants that combine to make up the experimental signals 
under various polarization conditions. For example, we 
noted that the triple-trace invariant is entirely the result of the 
time-evolving interaction-induced part of the many-body 
polarizability. Both our atomic liquid and our solution have 
such interaction-induced parts but (at our level of treatment 
of the polarizability) the triple trace vanishes identically for a 
neat atomic liquid,46 so this invariant is explicitly molecular. 
However it is difficult to say more based on these calculations 
alone. For our solution the dynamics seen by this invariant 
could arise from either the center-of-mass translation or the 
solute reorientation (or both). It is interesting to note, 
though, that while the invariant needs a nonspherical molec
ular shape to be nonvanishing, it does not need the molecule 
to rotate. The anisotropy of the molecular polarizability 
could give rise to a signal by a kind of “heterodyned” process, 
merely amplifying and making visible the translational 
dynamics.

By way of contrast, the triple-product invariant, the 
invariant at the other end of the scale, lent itself much more 
easily to interpretation. We saw that while this invariant 
could have had contributions from the time evolutions of 
both the single-molecule and the interaction-induced 
polarizabilities, the former was noticeably larger in our 
solution example. As a result, we can be fairly confident that 
this invariant mostly tracks the reorientational dynamics of 
our solute in the solution case.

This last feature points out another key feature of our 
analysis. The comparison between neat Xe liquid and the Xe 
solution is a comparison between a system with many 
identically polarizable species and a system with one, uniquely 
large polarizability. Having such an inhomogeneous set of 
polarizabilities significantly decouples the response functions 
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of the solution, permitting the single-molecule terms to 
dominate whenever they are symmetry allowed. More than 
that though, this decoupling may be what allows us to see 
some of the nodal lines and to see what might be independent
mode behavior, both of which stand in marked contrast to 
the results for neat liquid Xe.

Understanding the nodes was, of course, one of the main 
goals of this work. However what the evidence in this paper 
suggests is that there may not much to understand. Nodes 
seem to appear and disappear with little systematic regularity: 
They show up in the original rotational invariants and in the 
combinations of invariants that correspond to experimental 
polarization conditions. They can arise from either the 
single-molecule part of the polarizability or the interaction- 
induced part. They can show up in a molecular liquid or an 
atomic mixture. If there is any physical significance to the 
presence (or more likely to the absence) of nodal lines 
beyond their being a sensitive measure of the similarity of 
two different studies, it is a significance yet to be uncovered.

A more promising avenue for investigation, perhaps, is to 
delve more deeply into the specific dynamical origins of 
each of the rotational invariants. Straightforward molecular 
dynamics can only take us so far in associating specific 
signals with specific kinds of molecular motion. It cannot 
tell us, for example whether rotational and librational 
motions differ noticeably from translation in their 5th-order 
Raman signatures. Nor can it tell us whether the spectrum is 
really looking at the anharmonicity inherent in the liquid 
dynamics or the presence of nonlinearity in the coupling of 
that dynamics to the experimental signal.3,18,22-24,47 To pursue 
these questions we have carried out instantaneous-normal
mode analyses16,18 on the two-dimensional Raman spectra of 
this same CS2/Xe solution. The findings from these studies 
will be presented in a subsequent paper.35
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