DOI QR코드

DOI QR Code

Stability of ZnAl2O4 Catalyst for Reverse-Water-Gas-Shift Reaction (RWGSR)

  • Joo, Oh-Shim (Eco-Nano Research Center, Korea Institute of Science and Technology) ;
  • Jung, Kwang-Deog (Eco-Nano Research Center, Korea Institute of Science and Technology)
  • Published : 2003.01.20

Abstract

Reverse-Water-Gas-Shift reaction (RWGSR) was carried out over the ZnO, $Al_2O_3,\;and\;ZnO/Al_2O_3$ catalysts at the temperature range from 400 to 700 ℃. The ZnO showed good specific reaction activity but this catalyst was deactivated. All the catalysts except the $ZnO/Al_2O_3$ catalyst (850 ℃) showed low stability for the RWGSR and was deactivated at the reaction temperature of 600 ℃. The $ZnO/Al_2O_3$ catalyst calcined at 850 ℃ was stable during 210 hrs under the reaction conditions of 600 ℃ and 150,000 GHSV, showing CO selectivity of 100% even at the pressure of 5 atm. The high stability of the $ZnO/Al_2O_3$ catalyst (850 ℃) was attributed to the prevention of ZnO reduction by the formation of $ZnAl_2O_4$ spinel structure. The spinel structure of $ZnAl_2O_4$ phase in the $ZnO/Al_2O_3$ catalyst calcined at 850 ℃ was confirmed by XRD and electron diffraction.

Keywords

References

  1. Jessop, P. G.; Ikariya, T.; Noyori, R. Chemical Reviews 1995,95(2), 259. https://doi.org/10.1021/cr00034a001
  2. Usui, N.; Ikenouchi, M. Energy Convers. Mgmt. 1997, 38, S487-S492. https://doi.org/10.1016/S0196-8904(96)00315-9
  3. Kitamura, N.; Tazuke, S. Chem. Lett. 1983, 1109.
  4. Lee, K. R.; Lim, J. H.; Lee, J. K.; Chun, H. S. Korean J. Chem.Eng. 1999, 16(6), 829. https://doi.org/10.1007/BF02698360
  5. Joo, O. S.; Jung, K. D.; Moon, I.; Rozovskii, A. Ya; Lin, G. I.;Han, S. H.; Uhm, S. J. Ind. Eng. Chem. Res. 1999, 38(5), 1808. https://doi.org/10.1021/ie9806848
  6. Twigg, M. V. Catalyst Handbook; Wolfe Publication: London,1989; pp 283-339.
  7. Park, S. W.; Joo, O. S.; Jung, K. D.; Kim, H.; Han, S. H. Korean J.Chem. Eng. 2000, 17(6), 719. https://doi.org/10.1007/BF02699123
  8. Joo, O. S.; Jung, K. D.; Han, S. H.; Uhm, S. J.; Lee, D. K.; Ihm, S.K. Appl. Catal. A:General 1996, 135, 273. https://doi.org/10.1016/0926-860X(95)00256-1
  9. Park, S. W.; Joo, O. S.; Jung, K. D.; Kim, H.; Han, S. H. Appl.Catal. A: General 2001, 211, 81. https://doi.org/10.1016/S0926-860X(00)00840-1
  10. Jung, K. D.; Joo, O. S.; Han, S. H. Catal. Lett. 2000, 68, 49. https://doi.org/10.1023/A:1019027302428
  11. Heimendahl, M. V. Electron Microscopy of Materials; AcademicPress: New York, U.S.A., 1980; p 95.

Cited by

  1. Carbon dioxide capture and utilization in petrochemical industry: potentials and challenges vol.4, pp.1, 2014, https://doi.org/10.1007/s13203-014-0050-5
  2. Perovskite LaMnO3/ZSM-5 composites for H2S reactive adsorption at high temperature vol.22, pp.3, 2016, https://doi.org/10.1007/s10450-016-9780-2
  3. CeO2-La2O3/ZSM-5 sorbents for high-temperature H2S removal vol.33, pp.6, 2016, https://doi.org/10.1007/s11814-016-0013-x
  4. Influence of inversion defects and Cr–Cr pairs on the photoluminescent performance of ZnAl2O4 crystals pp.1573-4846, 2017, https://doi.org/10.1007/s10971-017-4527-4
  5. Improvement of structural and optical properties of ZnAl2O4:Cr3+ ceramics with surface modification by using various concentrations of zinc acetate vol.88, pp.2, 2018, https://doi.org/10.1007/s10971-018-4820-x
  6. Natural gas to synthesis gas - Catalysts and catalytic processes vol.3, pp.2, 2003, https://doi.org/10.1016/j.jngse.2011.03.004
  7. Kinetics of reverse water‐gas shift reaction over Pt/Al2O3 catalyst vol.94, pp.1, 2016, https://doi.org/10.1002/cjce.22370
  8. CO2conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2conversion to liquid fuels vol.6, pp.55, 2003, https://doi.org/10.1039/c6ra05414e
  9. CuO‐CeO2/ZSM‐5 composites for reactive adsorption of hydrogen sulphide at high temperature vol.94, pp.12, 2003, https://doi.org/10.1002/cjce.22613
  10. Optical properties of Cr doped ZnAl2O4 nanoparticles with Spinel structure synthesized by hydrothermal method vol.7, pp.1, 2003, https://doi.org/10.1088/2053-1591/ab6125
  11. Recent Advances in Supported Metal Catalysts and Oxide Catalysts for the Reverse Water-Gas Shift Reaction vol.8, pp.None, 2003, https://doi.org/10.3389/fchem.2020.00709
  12. Zn-Al Mixed Oxides Decorated with Potassium as Catalysts for HT-WGS: Preparation and Properties vol.10, pp.9, 2003, https://doi.org/10.3390/catal10091094