References
- Oh, H. K.; Yang, J. H.; Sung, D. D.; Lee, I. J. Chem. Soc., PerkinTrans. 2 2000, 101.
- Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I.J. Org. Chem. 2000, 65, 2188. https://doi.org/10.1021/jo991823d
- Oh, H. K.; Yang, J. H.; Lee, H.W.; Lee, I. J. Org. Chem. 2000, 65, 2188. https://doi.org/10.1021/jo991823d
- Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem. Soc.2001, 22, 383.
- Lee, I.; Lee, H. W.; Lee, B. C.; Choi, J. H. Bull. Korean Chem.Soc. 2002, 23, 201. https://doi.org/10.5012/bkcs.2002.23.2.201
- Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
- Lee, I. Adv. Phys. Org. Chem. 1992, 16, 277.
- Koh, H. J.; Chin, C. H.; Lee, H. W.; Lee, I. J. Chem. Soc., PerkinTrans. 2 1998, 1329.
- Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824. https://doi.org/10.1021/ja00766a027
- Koh, H. J.; Kim, T. H.; Lee, B.-S.; Lee, I. J. Chem. Res. 1996,(S) 482; (M) 2741
- Castro, E. A.; Freudenberg, M. J. Org.Chem. 1980, 45, 906. https://doi.org/10.1021/jo01293a027
- Neuvonen, H. J. Chem. Soc., Perkin Trans. 2 1995, 951.
- Oh, H. K.; Yang, J. H.; Cho, I. H.; Lee, I. Int. J. Chem. Kinet.2000, 32, 485. https://doi.org/10.1002/1097-4601(2000)32:8<485::AID-KIN6>3.0.CO;2-X
- Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4,45. https://doi.org/10.1002/9780470171837.ch2
- Oh, H. K.; Lee, J.; Lee, I. Bull. Korean Chem. Soc. 1998, 19,1198.
- Oh, H. K.; Woo, S. Y.; Shin, C. H.; Lee, I. Int. J. Chem.Kinet. 1998, 30, 849. https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<849::AID-KIN7>3.0.CO;2-V
- Oh, H. K.; Shin, C. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995,1169.
- Guggenheim, E. A. Phil. Mag. 1926, 2, 538. https://doi.org/10.1080/14786442608564083
Cited by
- Hypervalent Iodine Catalyzed Hofmann Rearrangement of Carboxamides Using Oxone as Terminal Oxidant vol.77, pp.24, 2012, https://doi.org/10.1021/jo302375m
- Kinetics and mechanism of the aminolysis of aryl thiocarbamates: effects of the non-leaving group vol.3, pp.7, 2005, https://doi.org/10.1039/b500251f
- Substrate specificity of Streptomyces transglutaminases vol.136, pp.3, 2007, https://doi.org/10.1007/s12010-007-9027-5
- Aminolysis and pyridinolysis ofO-arylS-(4-nitrophenyl) thiocarbonates in aqueous ethanol. Kinetics and mechanism vol.21, pp.4, 2008, https://doi.org/10.1002/poc.1312
- Effect of Amine Nature on Rates and Mechanism: Pyridinolyses of 4-Nitrophenyl Benzoate vol.24, pp.9, 2003, https://doi.org/10.5012/bkcs.2003.24.9.1245
- Kinetics and Mechanism of the Aminolysis of Anilino Thioethers with Benzylamines in Acetonitrile vol.25, pp.4, 2004, https://doi.org/10.5012/bkcs.2004.25.4.557
- Effect of Changing Electrophilic Center from Carbonyl to Sulfonyl Group on Electrophilicity vol.26, pp.3, 2003, https://doi.org/10.5012/bkcs.2005.26.3.457
- Kinetics and Mechanism of the Addition of Benzylamines to α-Cyano-β-phenylacrylamides in Acetonitrile vol.26, pp.6, 2003, https://doi.org/10.5012/bkcs.2005.26.6.935
- Aminolysis of Aryl N-Ethyl Thionocarbamates: Cooperative Effects of Atom Pairs O and S on the Reactivity and Mechanism vol.70, pp.14, 2003, https://doi.org/10.1021/jo050606b
- Kinetics and Mechanism of the Aminolysis of Aryl N,N-Dimethyl Thiocarbamates in Acetonitrile vol.28, pp.3, 2003, https://doi.org/10.5012/bkcs.2007.28.3.485
- Kinetics and Mechanism of the Aminolysis of Aryl Thionocarbamates in Acetonitrile vol.30, pp.3, 2009, https://doi.org/10.5012/bkcs.2009.30.3.749