DOI QR코드

DOI QR Code

Four Embryophyte Introns and psbB Operon Indicate Chlorokybus as a Basal Streptophyte Lineage

  • Lee, Jung-Ho (Institute of Systematic Botany, University of Ziirich) ;
  • James R. Manhart (Department of Biology, Texas A&M University)
  • Published : 2002.03.31

Abstract

The transition of plant life from aquatic algae to land to land plants was one of the major events in the history of life. However, in hypothesizing the exact evolutionary path of the transition, limited shared phenotypic characters in aquatic algae and land plants (embryophytes) have been a major hinderance. Chloroplast genomes contain characters useful in tracing evolutionary histories. Embryophyte chloroplast genomes are distinguished from algal cpDNAs by having over 20 group Ⅱ introns, some of which were gained during the transition from algae to embryophytes (Manhart and Palmer 1990; Lew and Manhart 1993;Lee and Manhart 2002). Here we examine a gene cluster that, in land plants, contains psbB, psbT, psbH, petB and petD with introns found in petB and petD (petB.i and petD.i). In addition the presence/absence of introns in trnA and trnI (trnA.i and trnI.i) were determined in all five major lineages of charophytes. We found that the psbB gene cluster occurs in most surveyed charophytes and embryophytes except Spirogyra (Zygnematales) which lacks it due to intra-genomic rearrangement. All four introns are absent in Chlorokybus but present in some or all of the other four charophyte lineages (Klebsormidiales, Zygnematales, Coleochaetales, and Charales). In addition, Chlorokybus is distinguished from other charophytes and embryophytes by having an unusually long spacer (over 2 kb) between psbH-petB. The results indicate that Chlorokybus diverged before the intron gains but after psbB gene cluster formation, placing the other charophyte lineages closer to embryophytes.

Keywords

References

  1. Baldauf S.L., Manhart J.R and Palmer J.D. 1990. Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc. Natl. Acad. Sci. U.S.A. 87:5317-5321. https://doi.org/10.1073/pnas.87.14.5317
  2. Bhattacharya D. and Medlin L. 1998. Algal phylogeny and the origin of land plants. Plant Physiol. 116: 9-15. https://doi.org/10.1104/pp.116.1.9
  3. Bhattacharya D., Weber K, An S.S. and Berning-Koch W. 1998. Actin phylogeny identifies Mesostigma virideas a flagellate ancestor of the land plants. J. Mol. Evol. 47: 544-550. https://doi.org/10.1007/PL00006410
  4. Bremer, K 1985. Summary of green plant phylogeny and classification. Cladistics 1: 369-385. https://doi.org/10.1111/j.1096-0031.1985.tb00434.x
  5. Douglas S.E. and Penny S.L. 1999. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48: 236-244. https://doi.org/10.1007/PL00006462
  6. Glockner G., Rosenthal A. and Valentin K 2000. The structure and gene repertoire of an ancient red algal plastid genome. J. Mol. Evol. 51: 382-390. https://doi.org/10.1007/s002390010101
  7. Hoshaw R.W. 1980. Systematics of the Zygnemataceae (Chlorophyceae). II. Zygospore-wall structure in Sirogonium and a taxonomic proposal. J. Phycol. 16: 242-250. https://doi.org/10.1111/j.1529-8817.1980.tb03026.x
  8. Hiratsuka J., Shimada H. and Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C.-R., Meng B.-Y., Li Y.-Q., Kanno A, Nishizawa Y., Hirai A., Shinozaki K. and Sugiura M. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recommbination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194. https://doi.org/10.1007/BF02464880
  9. Hupfer H., Swiatek M., Hornung S., Hermann R.G., Maier R.M., Chiu W.L. and Sears B. 2000. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes. Mol. Gen. Genet. 263: 581-585.
  10. Karol K.G., McCourt R.M., Cimino M.T. and Delwiche C. 2001. The closest living relatives of land plants. Science 294: 2351-2353. https://doi.org/10.1126/science.1065156
  11. Kato T., Kaneko T. Sato S., Nakamura Y. and Tabata S. 2000. Complete structure of the chloroplast genome of a legume, Lotus japonicue. DNA Res. 7: 323-330. https://doi.org/10.1093/dnares/7.6.323
  12. Kowallik K.V., Stoebe B. and Schaffran I. 1995. The Chloroplast Genome of a chlorophyll a+c-containing Alga, Odoniella sinensis. Plant Mol. Biol. Rep. 13: 336-342. https://doi.org/10.1007/BF02669188
  13. Kranz H.D., Miks D., Siegler M.-L., Capesius I., Sensen C.W. and Huss V.A.R. 1995. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribo-somal RNA gene sequences. J. Mol. Evol. 41: 74-84. https://doi.org/10.1007/BF00174043
  14. Lee J. and Manhart J.R. 2002. The Chioroplast rpl23 gene cluster of Spirogyra maxima (Charophyceae) shares many similarities with the angiosperm rpl23 operon. Algae17: 1-10. https://doi.org/10.4490/ALGAE.2002.17.1.059
  15. Lemieux C., Otis C. and Turmel M. 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649-652. https://doi.org/10.1038/35001059
  16. Lew K.A. and Manhart J.R 1993. The rps12 gene in Spirigyra maxima (Chlorophyta) and its evolutionary significance. J. Phycol. 29:500-505. https://doi.org/10.1111/j.1529-8817.1993.tb00151.x
  17. Manhart J.R and Palmer J.D. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345: 268-270. https://doi.org/10.1038/345268a0
  18. Manhart J.R, Howsaw RW. and Palmer J.D. 1990. Unique chloroplast genome in Spirogyra maxima (Chlorophyta) revealed by physical and gene mapping. J. Phycol. 26: 490-494. https://doi.org/10.1111/j.0022-3646.1990.00490.x
  19. Mattox KR and Stewart KD. 1983. Classification of the green algae: A concept based on comparative cytology. In Irvine D.E.G. and John D.M. (eds). Systematics of the Green Algae. Academic Press. London. pp. 29-72.
  20. Melkonian M., Marin B. and Surek B. 1995. Phylogeny and Evolution of the algae. In Arai, R, Kato M. and Doi, Y. (eds.). Biodiversityand Evolution, National Science Museum Foundation. Tokyo. 153-176
  21. Mishler B.D. and Churchill S.P. 1985. Transition to a land flora: Phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305-328. https://doi.org/10.1111/j.1096-0031.1985.tb00431.x
  22. Ohyama K, Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., Umesono K, Shiki Y., Takeuchi M., Chang Z., Aota S.-I., Inokuchi H. and Ozeki H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574. https://doi.org/10.1038/322572a0
  23. Qiu Y.-L., Cho Y.,Cox J.C. and Plamer J.D. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671-674 https://doi.org/10.1038/29286
  24. Qiu Y.-L.and Palmer J.D. 1999. Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci. 4: 26-30.
  25. Qiu Y-L. and Lee J. 2000. Transition to a land flora: A molecular phylogenetic perspective. J. Phycol. 36: 799-802. https://doi.org/10.1046/j.1529-8817.2000.03653.x
  26. Reith M. and Munholl and J. 1995. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 13: 333-335. https://doi.org/10.1007/BF02669187
  27. Rogers C.E., Mattox K.R and Stewart K.D. 1980. The zoospore of Chlorokybus atmophyticus, a charophyte with sarcinoid growth habit. Amer. J. Bot. 67: 774-783. https://doi.org/10.2307/2442669
  28. Sato S., Nakamura Y., Kaneko T., Asamizu E. and Tabata S. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6: 283-290. https://doi.org/10.1093/dnares/6.5.283
  29. Schmitz-Linneweber C., Maier R.M., Alcaraz J.P., Cottet A, Herrmann R.G. and Mache, R 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol. Biol. 45: 307-315. https://doi.org/10.1023/A:1006478403810
  30. Shinozaki K., Ohme M. and Tanaka M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO Journal 5: 2043-2049.
  31. Sluiman H.J. 1985. A cladistic evaluation of the lower and higher green plants (Viridiplantae). Pl. Syst. Evol. 149: 217-232. https://doi.org/10.1007/BF00983308
  32. Stirewalt V.L., Michalowski C.B., Luffelhardt W., Bohnert H.J. and Bryant D.A. 1995. Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol. Biol. Rep. 13: 327-332. https://doi.org/10.1007/BF02669186
  33. Turmel M., Otis C. and Lemieux C. 1999. The complete ch1oroplast DNA sequence of the green alga Nephroselmis olivacea:insights into the architecture of ancestral chloroplast genomes. Proc. Natl. Acad. Sd. U.S.A. 96: 10248-10253. https://doi.org/10.1073/pnas.96.18.10248
  34. Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T. and Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sd. USA. 91: 9794-9798. https://doi.org/10.1073/pnas.91.21.9794
  35. Wakasugi T., Nagai T., Kapoor M., Sugita M., Ito M., Ito S., Tsudzki J., Nakashima K., Tsudzuki T., Suzuki Y., Hamada A., Ohta T., Inamura A., Yoshinaga K. and Sugiura M. 1997. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of the genes possibly involved in chloroplast division. Proc. Natl. Accad. Sci. U.S.A. 94:5967-5972. https://doi.org/10.1073/pnas.94.11.5967
  36. Wilcox L.W., Fuerst P.A. and Floyd G.L. 1993. Phylogenetic relationships of four charophycean green algae inferred from complete nuclear-encoded small.subunit rRNA gene sequences. Amer. J. Bot. 80: 1028-1033. https://doi.org/10.2307/2445750
  37. Wolfe K.H., Morden C.W. and Palmer J.D. 1992. Function and evolution of a minimal plastid genome from a nonphoto-synthetic parasitic plant. Proc. Nail. Acad. Sci. U.S.A. 89:10648-10652. https://doi.org/10.1073/pnas.89.22.10648

Cited by

  1. Complete chloroplast genomic sequence of Citrus platymamma determined by combined analysis of Sanger and NGS data vol.56, pp.5, 2015, https://doi.org/10.1007/s13580-015-0061-x
  2. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica vol.105, pp.46, 2008, https://doi.org/10.1073/pnas.0804968105
  3. Phylogenetic Analyses of Basal Angiosperms Based on Nine Plastid, Mitochondrial, and Nuclear Genes vol.166, pp.5, 2005, https://doi.org/10.1086/431800
  4. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-4014-x
  5. Chloroplast genome of white wild chrysanthemum, Dendranthema sp. K247003, as genetic barcode vol.4, pp.2, 2015, https://doi.org/10.12651/JSR.2015.4.2.152