DOI QR코드

DOI QR Code

The Chloroplast rpl23 Gene Cluster of Spirogyra maxima (Charophyceae) Shares Many Similarities with the Angiosperm rpl23 Operon

  • Lee, Jung-Ho (Department of Biology, Texas A&M University) ;
  • James R. Manhart (Department of Biology, Texas A&M University)
  • Published : 2002.03.31

Abstract

A phylogenetic affinity between charophytes and embryophytes (land plants) has been explained by a few chloroplast genomic characters including gene and intron (Manhart and Palmer 1990; Baldauf et al. 1990; Lew and Manhart 1993). Here we show that a charophyte, Spirogyra maxima, has the largest operon of angiosperm chloroplast genomes, rpl23 operon (trnⅠ-rpl23-rpl2-rps19-rpl22-rps3-rpl16-rpl14-rps8-infA-rpl36-rps11-rpoA) containing both embryophyte introns, rpl16.i and rpl2.i. The rpl23 gene cluster of Spirogyra contains a distinct eubacterial promoter sequence upstream of rpl23, which is the first gene of the green algal rpl23 gene cluster. This sequence is completely absent in angiosperms but is present in non-flowering plants. The results imply that, in the rpl23 gene cluster, early charophytes had at least two promoters, one upstream of trnⅠ and and another upstream of rpl23, which partially or completely lost its function in land plants. A comparison of gene clusters of prokaryotes, algal chloroplast DNAs and land plant cpDNAs indicated a loss of numerous genes in chlorophyll a+b eukaryotes. A phylogenetic analysis using presence/absence of genes and introns as characters produced trees with a strongly supported clade containing chlorophyll a+b eukaryotes. Spirogyra and embryophytes formed a clade characterized by the loss of rpl5 and rps9 and the gain of trnⅠ (CAU) and introns in rpl2 and rpl16. The analyses support the hypothesis that the rpl23 gene cluster and the rpl2 and rpl16 introns of land plants originated from a common ancestor of Spirogyra and land plants.

Keywords

References

  1. Baldauf S.L., Manhart J.R., and Palmer J.D. 1990. Differential fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. Proc. Natl. Acad. Sci. U.S.A. 87:5317-5321. https://doi.org/10.1073/pnas.87.14.5317
  2. Bhattacharya D., Helmchen T., Bibeau C. and Melkonian M. 1995. Comparisons of nuclear-encoded small-subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol. Biol. Evol. 12: 415-420.
  3. Bhattacharya D. and Medlin L. 1995. The phylogeny of plastids: A review based on comparisons of small-subunit ribosomal RNA coding regions. J. Phycol. 31: 489-498. https://doi.org/10.1111/j.1529-8817.1995.tb02542.x
  4. Blattner F.R., Plunkett III G., Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vodes J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B. and Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1474. https://doi.org/10.1126/science.277.5331.1453
  5. Boylan S.A., Suh J.-W., Thomas S.M. and Price C.W. 1989. Gene encoding the alpha core subunit of Bacillus subtilis RNA polymerase is cotranscribed with the genes for innitiation factor 1 and ribosomal proteins B, S13, S11, and S17. J. Bact. 171: 2553-2562. https://doi.org/10.1128/jb.171.5.2553-2562.1989
  6. Bremer K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795-803. https://doi.org/10.2307/2408870
  7. Christopher D.A. and Hallick R.B. 1990. Complex RNA mutation pathway for a chloroplast ribosomal protein operon with an internal tRNA cistron. The Plant Cell 2: 659-671. https://doi.org/10.2307/3869129
  8. Donoghue M.J., Olmstead R.G., Smith J.F. and Palmer I.D. 1992. Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann. Missouri Bot. Gard. 79: 333-345. https://doi.org/10.2307/2399772
  9. Douglas S.E. and Penny S.L. 1999. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J. Mol. Evol. 48: 236-244.
  10. Downie S.R., Olmstead R.G., Zurawski G., Soltis D.E., Soltis P.S., Watson J.C. and Palmer J.D. 1991. Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: Molecular and phylogenetic implications. Evolution 45:1245-1259. https://doi.org/10.2307/2409731
  11. Fassler J.S. and Gussin J.S. 1996. Promoters elements and RNA polymerase components. Method in Enz. 273: 3-42. https://doi.org/10.1016/S0076-6879(96)73003-3
  12. Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A, Fleischmann R.D., Bult C.J., Kerlavage A.R, Sutton G., Kelley J.M., Fritchman J.L., Weidman J.F., Small K.V., Sandusky M., Fuhrmann J.L., Nguyen D.T., Utterback T.R., Saudek D.M., Phillips C.A., Merrick J.M., Tomb J.-F., Dougherty B.A., Bott K.F., Hu P.-C., Lucier T.S., Peterson S.N., Smith H.O., Hutchison C.A. and Venter J.C. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397-403. https://doi.org/10.1126/science.270.5235.397
  13. Gantt J.S., Baldauf S.L., Calie P.J., Weeden N.F. and Palmer J.D. 1991. Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO.J. 10: 3073-3078.
  14. Genetic Computer Group 1991. Program Manual for the GCG Package, Version 7. Madison, Wisconsin.
  15. Gibbs S.P. 1978. The chloroplasts of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56: 2883-2889. https://doi.org/10.1139/b78-345
  16. Glockner G., Rosenthal A. and Valentin K. 2000. The structure and gene repertoire of an ancient red algal plastid genome. J. Mol. Evol. 51:382-390. https://doi.org/10.1007/s002390010101
  17. Graham L.E. 1993. Origin of land plants. John Wiley and Sons, Madison pp. 1-14.
  18. Hallick R.B., Hong L., Drager R.G., Favreau M.R, Monfort A., Orsat B., Spielmann A. and Stutz E. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 21: 3537-3544. https://doi.org/10.1093/nar/21.15.3537
  19. Hardin S.H., Jones L.B., Homayouni R. and McCollum J.C. 1996. Octomer-primed cycle sequencing: Design of an optimized primer library. Genome Research 6: 545-550. https://doi.org/10.1101/gr.6.6.545
  20. Helmchen T.A., Bhattacharya D. and Melkonian M. 1995. Analyses ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids. J. Mol. Evol. 45: 203-210.
  21. Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M., Kondo C., Honji Y., Sun C-R, Meng B.-Y., Li Y.-Q., Kanno A, Nishizawa Y., Hirai A., Shinozaki K. and Sugiura M. 1989.The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recommbination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194. https://doi.org/10.1007/BF02464880
  22. Jahn D., Hartmann R.K and Erdmann V.A. 1991. Analysis of the spc ribosomal protein operon of Thermus aquaticus. Eur. J. Biochem. 197: 733-740. https://doi.org/10.1111/j.1432-1033.1991.tb15965.x
  23. Jenkins K.P., Hong L. and Hallick R.B. 1995. Alternative splicing of the Euglena gracilis chloroplast roaA transcript. RNA 1: 624-633.
  24. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T., Hosouchi T., Matsuno A, Muraki A., nakazaki N., Naruo K., Okunura S., Shimpo S., Takeuchi C, Wada T., Watanabe A., Yamada M., Yasuda M. and Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Research 3: 109-136. https://doi.org/10.1093/dnares/3.3.109
  25. Kanno A. and Hirai A 1993. A transcription map of the chloroplast genome from rice (Oryza sativa). Curr. Genet. 23: 166-174. https://doi.org/10.1007/BF00352017
  26. Kenrick P. and Crane P.R. 1997.The origin and early evolution of plants on land. Science 389: 33-39.
  27. Kowallik K.V., Stoebe B., Schaffran I., Kroth-Panic P. and Frieier U. 1995. The chloroplast genome of a chlorophyll a+c-containing alga, Odontella sinensis. Plant Mol. Biol. Rep. 13: 336-342. https://doi.org/10.1007/BF02669188
  28. Lemieux C., Otis C. and Turmel M. 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403: 649-652. https://doi.org/10.1038/35001059
  29. Lew K.A. and Manhart J.R. 1993. The rps12 gene in Spirogyra maxima (Chlorophyta) and its evolutionary significance. J. Phycol. 29: 500-505. https://doi.org/10.1111/j.1529-8817.1993.tb00151.x
  30. Lindahl L., Sor F., Archer R.H. and Nomura M. 1990. Transcriptional organization of the S10, spc and alpha operons of Escherichia coli. Bioch. Biophys. Acta. 1050:337-342. https://doi.org/10.1016/0167-4781(90)90191-4
  31. Maier R.M., Neckermann K, Igloi G.L. and Kossel H. 1995. Complete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251:614-628. https://doi.org/10.1006/jmbi.1995.0460
  32. Manhart J.R. and Palmer J.D. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature .5: 268-270. https://doi.org/10.1038/345268a0
  33. Manhart J.R, Hoshaw R.W. and Palmer J.D. 1990. Unique chloroplastgenome in Spirogyra maxima (Chlorophyta) revealed by physical and gene mapping. J. Phycol. 26:490-494. https://doi.org/10.1111/j.0022-3646.1990.00490.x
  34. Mattox K.R and Stewart K.O. 1983. Classification of the green algae: A concept based on comparative cytology. In Irvine D.E.G. and John D.M. (eds) Systematics of green algae. Academic press, London, pp. 29-72
  35. McFadden G.I., Waller RF., Reith M.E. and Lang-Unnasch N. 1997. Platids in apicomplexan parasites. Pl. Syst. Evol. (Suppl.) 11: 261-287. https://doi.org/10.1007/978-3-7091-6542-3_14
  36. Mishler B.D., Donoghue M.J. and Albert V.A. 1991. The decay index as a measure of relative robustness within a.cladogram. Willi Hennig Society Meeting. Toronto, Ontario.
  37. Mishler B.D., Lewis L.A., Buchheim M.A., Renzagolia K.S., Garbary D.J., Delwiche C.F., Zechman F.W., Kantz T.S. and Chapman R.L. 1994. Phylogenetic relationships of the Green algae and Bryophytes. Ann. Missouri Bot. Gard. 81:451-483. https://doi.org/10.2307/2399900
  38. Ohkubo S., Muto A., Kawauchi Y., Yamao F. and Osawa S. 1987. The ribosomal protein gene cluster of Mycoplasma capricolm. Mol. Gen. Genet. 210: 314-322. https://doi.org/10.1007/BF00325700
  39. Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., Umesono K, Shiki Y., Takeuchi M., Chang Z., Aota S.-I., Inokuchi H. and Ozeki H. 1986. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574. https://doi.org/10.1038/322572a0
  40. Ohyama K., Fukuzawa H., Kohchi T., Sano T., Sano S. and Shrai H. (1988) Structure and organization of Marchantia polymorpha chloroplast genome: I. Cloning and gene identification. J. Mol. Biol. 203: 281-298. https://doi.org/10.1016/0022-2836(88)90001-0
  41. Palmer JD 1991. Plastid chromosomes: Structure and evolution. In Bogorad L. and Vasil I.K. (eds) The molecular biology of plastids. Academic Press, Boston pp. 5-53.
  42. Pfeiffer T., Jorcke D., Feltens R., and Hartmann R.K 1995. Direct linkage str-, S10- and spc- related gene cluster in Thermus thermophilus HB8, and sequences of ribosomal proteins L4 and S10. Gene 167: 141-145. https://doi.org/10.1016/0378-1119(95)00698-2
  43. Reith M. and Munholland J. 1995. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 13: 333-335. https://doi.org/10.1007/BF02669187
  44. Sanangelantoni A.M. and Tiboni O. 1993. The chromosomal location of genes for elongation factor Tu and ribosomal protein S10 in cyanobacterium Spirulina platensis provides clues to the ancestral organization of str and S10 in prokaryotes. J. Gen. Micro. 139: 2579-2584. https://doi.org/10.1099/00221287-139-11-2579
  45. Sanangelantoni A.M., Bocchetta M., Cammarano P., and Tiboni O. 1994. Phylogenetic depth of S10 and spc operons: Cloning and sequencing of a ribosomal protein gene cluster from the extremely thermophilic bacterium Thermotoga maritima. J. Bact. 176: 7703-7710. https://doi.org/10.1128/jb.176.24.7703-7710.1994
  46. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayasida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., Ohto C.,Torazawa K, Meng B.Y., Sugita M., Deno H., Kamogashira T., Yamada K., Kusuda J., Takaiwa F., Kato A., Tohdoh N., Shimada H. and Sugiura M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043-2049.
  47. Stirewalt V.L., Michalowski C.B., Loffelhardt W., Bohnert H.J. and Bryant D.A. 1995. Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol. Biol. Rep. 13:327-332. https://doi.org/10.1007/BF02669186
  48. Sugiura M. 1992. The chloroplast genome. Plant Mol. Bioi. 19:149-168. https://doi.org/10.1007/BF00015612
  49. Sub J.-W., Boylan S.A., Oh S.-H., and Price C.W. 1996. Genetic and transcriptional organization of the Bacilillus subtilis spcalpha region. Gene 169: 17-23. https://doi.org/10.1016/0378-1119(95)00757-1
  50. Swofford D.L. 2000. Phylogenetic analysis using parsimony, version 4.0 beta.: User's manual. Illinois Natural History Survey, Champaign, IL
  51. Tanaka M., Wakasugi T., Sugita M. and Shinozaki K. 1986. Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): Similarity to the S10 and spc operons of Escherichia coli. Proc. Natl. Acad. Sci. USA. 83: 6030-6034. https://doi.org/10.1073/pnas.83.16.6030
  52. Thomas F., Massenet O., Dorne A.M., Briat J.F. and Maehe R. 1988. Expression of the rp123, rpl2, and rps19 genes in spinach chloroplasts. Nucleic Acids Res. 16: 2461-2412. https://doi.org/10.1093/nar/16.6.2461
  53. Turmel M., Otis C. and Lemieux C. 1999.The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc. Natl. Acad. Sci. U.S.A. 96: 10248-10253. https://doi.org/10.1073/pnas.96.18.10248
  54. Wakasugi T., Tsudzuki J., Ito S., Nakashima K. Tsudzuki T. and Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sci. U.S.A. 91: 9794-9798. https://doi.org/10.1073/pnas.91.21.9794
  55. Wakasugi T., Nagai T., Kapoor M., Sugita M., Ito M., Ito S., Tsudzki J., Nakashima K, Tsudzuki T., Suzuki Y, Hamada A., Ohta T., Inamura A., Yoshinaga K. and Sugiura M. 1997. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of the genes possibly involved in chloroplast division. Proc. Natl. Acad. Sci. U.S.A. 94: 5967-5972. https://doi.org/10.1073/pnas.94.11.5967
  56. Wolfe K.H., Morden C.W., Ems S.C. and Palmer J.D. 1992. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: Loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J. Mol. Evol. 35: 304-317. https://doi.org/10.1007/BF00161168

Cited by

  1. Complete Chloroplast Genome of Medicinal Plant Lonicera japonica: Genome Rearrangement, Intron Gain and Loss, and Implications for Phylogenetic Studies vol.22, pp.2, 2017, https://doi.org/10.3390/molecules22020249
  2. Complete chloroplast genomic sequence of Citrus platymamma determined by combined analysis of Sanger and NGS data vol.56, pp.5, 2015, https://doi.org/10.1007/s13580-015-0061-x
  3. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-4014-x
  4. Chloroplast genome of white wild chrysanthemum, Dendranthema sp. K247003, as genetic barcode vol.4, pp.2, 2015, https://doi.org/10.12651/JSR.2015.4.2.152