Comparison of Properties of Natural Ca-Montmorillonite and its Al-pillared Montmorillonites

천연 Ca-몬모릴로나이트와 이로부터 합성된 Al-가교몬모릴로나이트의 특성 비교연구

  • 이정현 (한국환경정책평가연구원) ;
  • 김수진 (서울대학교 지구환경과학부)
  • Published : 2002.12.01

Abstract

Al-pillared montmorillonite was synthesized from Na-saturated montmorillonite which was prepared by ionic substitution from Ca-montmorillonite of the Jabut mine, Gyeongiu City d(001), surface areas, and dehydration and ionic substitution properties have been compared for both Ca-montmorillonite and Al-pillared montmorillonite. d(001) spacings of Ca-montmorillonite and Al-pillared montmorillonite were 15.1 $\AA$ and $18.3\AA$, respectively. Dehydration took place before $350 ^{\circ}C$ in Ca-montmorillonite, whereas linealy up to $550^{\circ}C$ in Al-pillared montmorillonite. BET surface areas are 5~6 times larger in Al-pillared montmorillonite ($192 \m^2$/g) than Camontmorillonite. Ca-montmorilonite shows high selectivity for $Na^{+}$ /, whereas Al-pillared montmorillonite for $Ca^{2+}$ . The former shows decreasing d(001) spacing with increasing substitution of $Na^{+}$ and irregular interstratified structure at high substitution of $Ca^{2+}$ /, whereas the latter shows linear decreasing pattern in d(001) spacing with increasing $Ca^{ 2+}$.

국내산 Ca-몬모릴로나이트와 이것으로부터 이온치환에 의하여 합성된 Al-가교몬모릴로나이트의 특성을 비교하였다. Ca-몬모릴로나이트와 Al-가교몬모릴로나이트를 저면간격, 비표면적, 탈수 및 이온치환 등의 관점에서 그 특성을 비교 연구하였다. d(001) 간격은 Ca-몬모릴로나이트에서는 15.1 $\AA$이었으나 Al-가교몬모릴로나이트에서는 18.3 $\AA$으로 나타났다. 탈수는 Ca-몬모릴로나이트에서는 $350^{\circ}C$ 이하에서 일어났지만, Al-가교몬모릴로나이트에서는 $550 ^{\circ}C$까지도 선형적으로 일어났다. BET 비표면적은 Al-가교몬모릴로나이트( $192\m^2$/g)가 Ca-몬모릴로나이트보다 5~6배 높은 값을 보여주었다. Ca-Na 이온 용액과의 반응에서 Ca-몬모릴로나이트는$ Na^{+}$ 에 대하여, 그리고 Al- 가교몬모릴로나이트는 $Ca^{2+}$ 에 대하여 선택성을 보여주었다. Ca-몬모릴로나이트는 $Na^{+}$ /가 증가할수록 d(001)간격이 감소하다가 $Ca^{ 2+}$$Na^{+}$ /가 같은 양일 경우에 구조적으로 불규칙한 혼합층구조 상태를 보여주었으며 Al-가교몬모릴로나이트는 $Ca^{2+}$ 의 증가와 함께 d(001) 간격이 선형적으로 감소한 양상을 보여주었다.

Keywords

References

  1. Bain, D.C. and Smith. B.F.L. (1987) Chemical analysis. In : M. J. Wilson (Editor), A Ilandbook or Determinative Methods in Clay Mineralogy.Blackie, Glasgow and London, pp. 248-274.
  2. Barrer, R.M. (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press. London-New York-San Francisco.
  3. Bottcro, .J.Y., Cases, .J.M., Ficssingcr, F., and Poircr,J.E. (1980) Studies or hydrolyzed aluminum species and composition of aqueous solution. .J. Phys. Chem., 84, 2933-2939.
  4. Bottero, J.Y., Axelos. M.A. V., Tchoubar. D ., Cases. .J.M., Fripiat, .J..J., and Ficssingcr, F. (1987) Mechanism or formation or aluminum trihydroxidc from Keggin Al$_13$ polymers. .J. Colloid Interrace Sci.,117.47-57.
  5. Bradley, S.M. and Kydd, R.A. (1991) A comparison of the thermal stabilities of Ga$_13$, GaAI $_12$ and Al$_13$-pillarcd clay minerals. Catalysis I.ctt., 8,185-192.
  6. Brindley, G.W. and Scmpcls, R.E. (1977) Preparation and properties of some hydroxy-aluminum beidellites.Clay Miner., 12, 229-236.
  7. Eum, C.H., Choi, B.L Kim, S.Y., and Jung, K.S.(1996) A study on the characteristics of granular clay minerals for the adsorption and recovery or metal ions (3). KIGAM research report, KR-96 (C)-24.
  8. Gonzalez, F, Pesquera, C; Benito, I and Mendorioz, S. (1991) Aluminum-gallium pillared montmorillonite with high thermal stability. .J. Chem. Soc. Chem. Cornm.. 587-588.
  9. Gonzalez, F., Pcsqucra, C., Blanco, C., Benito, I., and Mcndorioz, S. (1992) Synthesis and characterization of Al-Ga pillared clays with high thermal and hydrothermal stability. Inorg. Chern., 31, 727-731. https://doi.org/10.1021/ic00031a007
  10. Inoue, A. and Minato, H. (1979). Ca-K exchange reaction and intcrstratification in montmorillonite. Clays Clay Miner.. 27. 393-401.
  11. Johansson, G. (1962) The crystal structures of [Al_2(ON)_2(H_2O)_8](SO_4)_2 . 2H_2O and [Al_2(ON)_2(H_2O)_8](SeO_4)_2 . 2H_2O. Acta Chem. Scand., 16, 403-420.
  12. Kloproggc, .J.T., Booy, E., Jansen, .J. B.H., and Gcus,.J.W. (1994) The effect or thermal treatment on the properties of hydroxy-A] and hydroxy-Ga pillared montmorillonite and beidellite. Clay Miner., 29,153-167.
  13. Kloproggc, .J.T., Scykcns, D., Gcus, .J.W., and Jansen, .J.B.H. (1992a). Temperature influence on the Al$_13$complex in partially neutralized aluminum solutions:an $^27$Al nuclear magnetic resonance study. .J.Non-Cryst. Solids, 142, 87-93.
  14. Kloproggc, J.T, Seykens, D., Jansen, .J. B.H., and Gcus, .l.W. (1992b) An $^27$AI nuclear magnetic resonance study on the optimalization or the development of the AIl3 polymer. .J. Non-Cryst. Solids. 142, 94-102.
  15. Lahav, N.. Shani, U.. and Shabtai. .J. (1978) Crosslinked smeetites I. Synthesis and properties of hydroxy-aluminum-montmorillonite.Clays Clay Miner.26.107-115.
  16. Michot, L.J Tracas, D., Lartiges, B.S., Lhote, F.,and Pons, C.-H. (1994) Partial pillaring of vermiculite by aluminum polyeations. Clay Miner.,29. 133-136.
  17. Pinnavaia, T..J. (1983) Intercalated clay catalysts. Science. 220, 365-371.
  18. Pinnavaia, T.J., Tzou, M.-S., Landau, S.D.. and Raythatha, R.H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxoeations or aluminum. .J. Mol. Catal., 27. 195-212.
  19. PIee. D.. Gatincau, L, and Fripiat, .J.J. (1987) Pillaring processes of smeetites with and without tetrahedral substitution. Clays Clay Miner., 35.81-88.
  20. PIee, D., Borg, F., Gatincau, I., and Fripiat, .J..J.(1985) High resolution solid state $^27$Al and $^29$Si nuclear magnetic resonance study or pillared clays. .J. Amer. Chem. Soc., 107. 2362-2369.
  21. Schoonheydt, R.A., Leeman, H., and Scorpion, A. (1994) The Al pillaring of clays. Part II . Pillaring with [Al_{13}O_4(OH)_{24}(H_2O)_{12}]^{7+}. Clays Clay Miner., 42. 518-525.
  22. Schutz. A., Stone. W.E.E.. Poncclct, G.. and Fripiat,.J.J. (1987) Preparation and characterization or bidimensional zcolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions.Clays Clay Miner., 38, 609-616.
  23. Seefeld, V., Bertram, R., Styarke, P., and Gessner,W. (1988) Zum Verhalten destridekameren Oxohydroxo- Al-Kations(Al$_13$) bci dcr Hcrstcllung von 'pillared clays'. Silikattcchnik, 39, 239-241.
  24. Theng, B.K.G. (1974) The Chemistry of ClayOrganic Reactions. Adam Hilger, London & John Wiley, New York.
  25. Thorcz, .J. (1976) Practical Identification of Clay Minerals : A Handbook for Teachers and Students in Clay Mineralogy. Institute or Mineralogy Liege State Univ., Belgium.
  26. Vaughan, D.E.W. and Lussier, R..J. (1980) Preparation of molecular sieves based on pillared intcrlaycrcd clays. In : Rccs, L.V.c. (Ed.), Proceedings 5th International Conference on Zeolites.Naples, Heyden, London, 94-101.