Dispersion Analysis of the Waveguide Structures by Using the Compact 2D ADI-FDTD

Compact 2D ADI-FDTD를 이용한 도파관 구조의 분산특성 연구

  • 어수지 (LG전자 이동단말사업본부) ;
  • 천정남 (한양대학교 전자전기컴퓨터공학부) ;
  • 박현식 (한양대학교 전자전기컴퓨터공학부) ;
  • 김형동 (한양대학교 전자전기컴퓨터공학부)
  • Published : 2002.10.01

Abstract

This paper presents the new Compact 2D ADI-FDTD(Alternating-Direction Implicit Finite-Difference Time-Domain) method, where the time step is no longer restricted by the numerical stability condition. This method is an accelerating algorithm for the conventional Compact 2D FDTD method. To validate this algorithm, we have analyzed the dispersion characteristics of the hollow rectangular waveguide and the shielded microstrip line. The results of the proposed method are very well agreed with those of both the conventional analytic method and the Compact 2D FDTD method. The CPU time for analysis of this method is very much reduced compared with the conventional Compact 2D FDTD method. The proposed method is valuable as a fast algorithm in the research of dispersion characteristics of the waveguide structures.

본 논문에서는 기존의 Compact 2D FDTD(Finite-Difference Time-Domain)에 대한 고속 알고리즘으로써 시간간격 △t가 안정조건(Stability Condition)에 의해 제한받지 않는 Compact 2D ADI(Alternating Direction Implicit)-FDTD 차분식을 제안하였다. 또한 구현된 알고리즘의 정확성 및 효율성을 검증하기 위하여 내부가 공기로 채워져 있는 구형(Rectangular) 도파관과 차폐된 전송선로를 해석하였다. 본 논문의 결과는 기존의 Compact 2D FDTD의 결과 및 해석적인 해와 매우 잘 일치하며, 계산 소요시간도 기존의 Compact 2D FDTD에 비해 상당히 절약되었음을 확인하였다. 제안된 알고리즘은 도파관 구조의 분산 특성 연구에 있어 효율적인 고속화 기술로서 의미가 있다고 할 수 있다.

Keywords

References

  1. A. Asi and L. Shafai, 'Dispersion Analysis of Anisotropic Inhomogeneous Waveguide Using Compact 2D-FDTD,' Electronics Lett., vol. 28, No. 15, pp. 1451-1452, 16-th July 1992 https://doi.org/10.1049/el:19920923
  2. M. Fujji and S. Kobayashi, 'Accurate Analysis of Losses in Waveguide Structures by Compact Two-Dimensional FDTD Method Combined with Autoregressive Signal Analysis,' IEEE Trans. On Microwave Theory and Tech., vol. 44, No. 6, pp. 970-975, June 1996 https://doi.org/10.1109/22.506639
  3. T. Namiki, '3-D ADI-FDTD Method-Unconditionally Stable Time-Domain Algorithm for Solving Full Vector Maxwell's Equations,' IEEE Trans. Microwave Theory and Tech., vol. 48, no. 10, pp. 1743-1748, Oct. 2000 https://doi.org/10.1109/22.873904
  4. F. Zheng, Z. Chen, and J. Zhang, 'Toward the Development of a Three-Dimensional Unconditionally Stable Finite-Difference Time-Domain Method,' IEEE Trans. On Microwave Theory and Tech., vol. 48, no. 9, pp. 1550-1558, Sept. 2000 https://doi.org/10.1109/22.869007
  5. Z. Chen and J. Jhang, 'An Unconditionally Stable 3-D ADI-MRTD Method Free of the CFL Stability Condition,' IEEE Microwave and Wireless Comp. Lett., vol. 11, no. 8, pp. 349-351, Aug. 2001 https://doi.org/10.1109/7260.941786
  6. Jeongnam Cheon, Sooji Uh, Hyunsik Park, and Hyeongdong Kim, 'Analysis of the Power Plane Resonance Using the Alternating Direction implicit(ADI) FDTD Method,' 2002 IEEE Antennas and Propagation Society International Symposium, San Antonio, USA, vol. 3, pp. 647-650, June 16-21, 2001
  7. A. Cangellaris, 'Numerical Stability and Numerical Dispersion of a Compact 2-D/FDTD Method Used for the Dispersion Analysis of Waveguides,' IEEE Microwave and Guided Wave Lett., vol. 3, No. 1, January 1993 https://doi.org/10.1109/75.180672
  8. F. Zheng and Z. Chen, 'Numerical Dispersion Analysis of the Unconditionally Stables 3 D ADI-FDTD Method,' IEEE Trans. On Microwave Theory and Tech., vol. 49, no. 5, pp. 1006-1009, May 2001 https://doi.org/10.1109/22.920165
  9. A. Taflove and S.Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain, 2nd Edition, Artech House, 2000
  10. T. Namkik, 'A New FDTD Algorithm Based on Alternating-Direction Implicit Method,' IEEE Trans. Microwave Theory and Tech., vol. 47, no. 10, pp. 2003-2007, Oct. 1999 https://doi.org/10.1109/22.795075
  11. S. Rao, Time Domain Electromagnetics, Academic Press, 1999
  12. IEEE Trans. Microwave Theory and Tech. v.47 no.10 A New FDTD Algorithm Based on Alternating-Dierction Implicit Method T.Namkik https://doi.org/10.1109/22.795075
  13. Time Domain Electromagnetics S.Rao