Analysis of Electromagnetic Scattering from Arbitrarily Shaped Three-Dimensional Dielectric Objects Using Combined Field Integral Equation

결합 적분방정식을 이용한 삼차원 임의형태 유전체의 전자파 산란 해석

  • 정백호 (호서대학교 전기정보통신공학부) ;
  • 한상호 (호서대학교 벤처전문대학원) ;
  • 이화용 (호서대학교 전기정보통신공학부)
  • Published : 2002.10.01

Abstract

In this paper, we present various combined field integral equation (CFIE) formulations for the analysis of electromagnetic scattering from arbitrarily shaped three dimensional homogeneous dielectric body in the frequency domain. For the CFIE case, we propose eight separate formulations with different combinations of testing functions that result in sixteen different formulations of CFIE by neglecting one of testing terms. One of the objectives of this paper is to illustrate that not all CFIE are valid methodologies in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results involving far scattered fields and radar cross section (RCS) are presented for a dielectric sphere to illustrate which formulation works and which do not.

본 논문에서는 주파수 영역에서 3차원 임의형태의 유전체 산란 해석을 위하여 다양한 결합 적분방정식(combined field integral equation, CFIE)의 구성을 제안한다. 서로 다른 시험 함수의 조합으로 8 가지의 CFIE를 제안하였다. 본 논문의 목적 중의 하나는 제안된 모든 CFIE가 구조물의 내부공진 주파수에서 공진문제를 극복하지 못함을 보이는 것이다. 또한 이 8가지의 CFIE는 네 개의 항으로 구성되는데, 이 중에서 하나를 무시하는 방법으로 16가지의 새로운 CFIE를 제안하였다. 수치 예로서 유전체로부터의 원거리장과 레이다 단면적(radar cross section, RCS) 계산 결과들을 보이며, 제안되는 각 CFIE의 동작 특성을 비교하여 고찰하였다.

Keywords

References

  1. R. F. Harrington, 'Boundary integral formulations for homogeneous material bodies,' J. Electromagn. Waves Applicat., vol. 3, no. 1, pp. 1-15, 1989 https://doi.org/10.1163/156939389X00016
  2. K. Umashankar, A. Taflove, and S. M. Rao, 'Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric bodies,' IEEE Trans. Antennas Propagat, vol. 34, no. 6, pp. 758-766, June 1986 https://doi.org/10.1109/TAP.1986.1143894
  3. T. K. Sarkar, S. M. Rao, and A. R. Djordjevic, 'Electromagnetic scattering and radiation from finite microstrip structures,' IEEE Trans. Microwave Theory Technol., vol. 38, no. 11, pp. 1568-1575, Nov. 1990 https://doi.org/10.1109/22.60001
  4. S. M. Rao and D. R. Wilton, 'E-field, H-field and combined field solution for arbitarily shaped three-dimensional dielectric bodies,' Electromagn., vol. 10, pp. 407-421, 1990 https://doi.org/10.1080/02726349008908254
  5. S. M. Rao, C. C. Cha, R. I. Cravey, and D. L. Wilkes, 'Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness,' IEEE Trans. Antennas Propagat., vol. 39, no. 5, pp. 627-631, May 1991 https://doi.org/10.1109/8.81490
  6. X. Q. Sheng, J. M. Jin, J. M. Song, W. C. Chew, and C. C. L, 'Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,' IEEE Trans. Antennas Propagat., vol. 46, no. 11, pp. 1718-1726, Nov. 1998 https://doi.org/10.1109/8.736628
  7. S. M. Rao, D. R. Wilton, and A. W. Glisson, 'Electromagnetic scattering by surfaces of arbitrary shape,' IEEE Trans. Antennsa Propagat., vol. 30, no. 5, pp. 409-418, May 1982 https://doi.org/10.1109/TAP.1982.1142818
  8. R. F. Harrington, Time Harmonic Electromagnetics, New York : McGraw-Hill, 1961
  9. S. M. Rao, Electromagnetic Scattering and Radiation of Arbitrarily-Shaped Surfaces by Trangular Patch Modeling. PhD Dissertation, Univ. Mississippi, Aug. 1980
  10. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, 'Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,' IEEE Trans. Antennas Propagat., vol. 32, no. 3, pp. 276-281, March 1984 https://doi.org/10.1109/TAP.1984.1143304
  11. S. Caorsi, D. Moreno, and F. Sidoti, 'Theoretical and numerical treatment of surface integrals involving the free-space Greens function,' IEEE Trans. Antennas Propagat., vol. 41, no. 9, pp. 1296-1301, Sep. 1993 https://doi.org/10.1109/8.247757
  12. R. D. Gralia, 'On the numerical integration of the linear shape functions times the 3-D Greens function or its gradient on a plane triangle,' IEEE Trans. Antennas Propagat., vol. 41, no. 10, pp. 1448-1455, Oct. 1993 https://doi.org/10.1109/8.247786
  13. T. F. Eibert and V. Hansen, 'On the calculation of potential integrals for linear source distributions on triangular domains,' IEEE Trans. Antennas Propagat., vol. 43, no. 12, pp. 1499-1502, Dec. 1995 https://doi.org/10.1109/8.475946