References
- H. Takagi and I. Hayashi, 'NN-driven fuzzy reasoning,' Int. J. of Approximate Reasoning, vol. 5, no. 3, pp. 191-212, 1991 https://doi.org/10.1016/0888-613X(91)90008-A
- S. Horikawa, T. Furuhashi, and Y. Uchigawa, 'On fuzzy modeling using fuzzy neural networks with the back propagation algorithm,' IEEE trans. Neural Networks, vol. 3, no. 5, pp. 801-806, 1992 https://doi.org/10.1109/72.159069
- N. Imasaki, J. Kiji, and T. Endo, 'A fuzzy rule structured neural networks,' Journal of Japan Society for Fuzzy Theory and Systems, vol. 4, no. 5, pp. 985-995, 1992(in Japanese) https://doi.org/10.3156/jfuzzy.4.5_985
- H. Nomura and Wakami, 'A self-tuning method of fuzzy control by descent methods,' 4th IFSA World Conference, pp. 155-159, 1991
- 오성권, 김동원, 박병준, '다항식 뉴럴네트워크 구조의 최적 설계에 관한 연구,' 대한전기학회논문지, 제49D권, 제3호, pp. 145-156, 2000
- S. K. Oh and W. Pedrycz, 'The design of self-organizing polynomial neural networks,' Information Sciences, 2002(to appear), https://doi.org/10.1016/S0020-0255(02)00175-5
- T. Yamakawa, 'A new effective learning algorithm for a neo fuzzy neuron model,' 5th IFSA World Conference, pp. 1017-1020, 1993
- 오성권. 윤기찬, 김현기, '유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계,' 제어.자동화.시스템공학논문지, 제6권, 제3호, pp. 273-283, 2000
- B. J. Park, W. Pedrycz, and S. K. Oh, 'Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling,' IEEE Trans. on Fuzzy Systems, 2002(to appear) https://doi.org/10.1109/TFUZZ.2002.803495
- A. G. Ivahnenko, 'The group method of data handling : a rival of method of stochastic approximation,' Soviet Automatic Control, vol. 13, no. 3, pp. 43-55, 1968
- M. Sugeno and T. Yasukawa, 'A fuzzy-logic-based approach to qualitative modeling,' IEEE Trans. on Fuzzy Systems, vol. 1, no. 1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
- A. F. Gomez-Skarmeta, M. Delgado, and M. A. Vila, 'About the use of fuzzy clustering techniques for fuzzy model identification,' Fuzzy Sets and Systems, vol. 106, pp. 179-188, 1999 https://doi.org/10.1016/S0165-0114(97)00276-5
- E. T. Kim, M. K. Park, S. H. Ji, and M. Park, 'A new approach to fuzzy modeling,' IEEE Trans. on Fuzzy Systems, vol. 5, no. 3, pp. 328-337, 1997 https://doi.org/10.1109/91.618271
- E. Kim, H. Lee, M. Park, and M. Park, 'A simply identified Sugeno-type fuzzy model via double clustering,' Information Sciences, vol. 110, pp. 25-39, 1998 https://doi.org/10.1016/S0020-0255(97)10083-4
- G. E. Box and G. M. Jenkins, Time Series Analysis : Forecasting and Control, Holden-day, 1970
- Y. Lin, G. A. Cunningham III, 'A new approach to fuzzyneural modeling,' IEEE Trans. Fuzzy Systems, vol. 3, no. 2, pp. 190-197, 1995 https://doi.org/10.1109/91.388173
- S. K. Oh and W. Pedrycz, 'Fuzzy identification by means of auto-tuning algorithm and its application to nonlinear system,' Fuzzy Sets and Syst., vol. 115, no. 2, pp. 205-230, 2000 https://doi.org/10.1016/S0165-0114(98)00174-2
- 박병준, 오성권, 안태천, 김현기, '유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화,' 대한전기학회논문지, 제48A권, 제6호, pp. 789-799, 1999
- 오성권, 박병준, 박춘성, '적응 퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링,' 대한전기학회논문지, 제48A권, 제10호, pp. 1293-1302, 1999
- David E. Goldberg, Genetic Algorithms in search, Optimizaion & Machine Learning, Addison-wesley, 1989
- Zbigniwe Michalewicz, Genetic Algorithms+Data Structure=Evolution Programs, Springer-Verlag, 1992
- B. J. Park, W. Pedrycz, and S. K. Oh, 'Identification of fuzzy models with the aid of evolutionary data granulation,' IEE Proc.-CTA, vol. 148, Issue 05, pp. 406-418, 2001 https://doi.org/10.1049/ip-cta:20010677