DOI QR코드

DOI QR Code

α -Cyclodextrin Modified Screen Printed Graphite Electrodes for Detection of Phenols


Abstract

A screen printed graphite electrode has been developed for a simple and sensitive determination of phenolic compounds in an aqueous solution. The electrode developed uses a simple and effective screen printing technique with ${\alpha}-Cyclodextrin({\alpha}-CD)$ modified graphite ink. Phenols were captured on the surface of the ${\alpha}-CD$ modified electrode through complex formation. The phenol/ ${\alpha}-CD$ complex was deposited and quantified electrochemically using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The optimization of the experimental parameters was performed in regard to electrode composition, pH, temperature, sample preconcentration time. Interferences from other organic compounds were investigated. The detection limit for phenols was 500 ${\pm}7$ nM for DPV, with the linear range of 0.5 ${\mu}M$ -25.0 ${\mu}M$ and 30 ${\pm}2$ nM for SWV, with the linear range of 30 nM - $50{\mu}M$, respectively.

Keywords

References

  1. Ho, C. T.; Lee, C. Y.; Huang, M. T. In ACS Sympo. Series; 1992.
  2. Manahan, S. E. Environmental Chemistry, 5th ed.; LewisPublishers, Inc.: Chelsea, USA, 1991.
  3. Kotte, H.; Grundig, B.; Vorlop, K.; Strehlitz, B.; Stottmeister, U.Anal. Chem. 1995, 67, 65. https://doi.org/10.1021/ac00097a011
  4. American Public Health Association Standard Method 5530A. Standard Methods for the Examination of Water and Wastewater, 19th ed.; APHA: Washington, 1995.
  5. Rivas, G. A.; Solis, V. M. Anal. Chem. 1991, 63, 2762. https://doi.org/10.1021/ac00023a018
  6. Ortega, F.; Domínguez, E.; Jonsson-Pettersson, G.; Gorton, L. J.Biotechnol. 1993, 31, 289. https://doi.org/10.1016/0168-1656(93)90075-X
  7. Onnerfjord, P.; Emnéus, J.; Marko-Varga, G.; Gorton, L. Biosen.& Bioelect. 1995, 10, 607. https://doi.org/10.1016/0956-5663(95)96937-T
  8. Lindgren, A.; Emnéus, J.; Ruzgas, T.; Gorton, L.; Marko-Varga,G. Anal. Chim. Acta 1997, 347, 51. https://doi.org/10.1016/S0003-2670(97)00126-8
  9. Wring, S. A.; Hart, J. P.; Birch, B. J. Analyst 1991, 116, 123. https://doi.org/10.1039/an9911600123
  10. Cagnini, A.; Palchetti, I.; Lionti, I.; Mascini, M.; Turner, A. P. T.Sens. Actu. B-Chem. 1995, 24, 85. https://doi.org/10.1016/0925-4005(95)85018-X
  11. Bender, M. I.; Komiyama, M. Cyclodextrin Chemistry; Springer:NY, 1978.
  12. Helden, S. P. V.; Eijck, B. P. V.; Janssen, L. H. M. J. Biomol.Struct. Dyn. 1992, 9, 1269. https://doi.org/10.1080/07391102.1992.10507991
  13. Huang, M. J.; Watts, J. D.; Bodor, N. Int. J. Quant. Chem. 1997,65, 1135. https://doi.org/10.1002/(SICI)1097-461X(1997)65:6<1135::AID-QUA12>3.0.CO;2-4
  14. Moon, D. H.; Paik, N. W.; Shim, Y. B. J. Chromato. B 1997, 694,367. https://doi.org/10.1016/S0378-4347(97)00164-3
  15. Moon, D. H.; Lee, Y. H.; Moon, C. S.; Shim, Y. B. Bull. KoreanChem. Soc. 1998, 19, 1306.
  16. John, H.; Luong, T.; Hilimi, A.; Nguyen, A. L. J. Chromato. 1999,864, 323. https://doi.org/10.1016/S0021-9673(99)01032-8
  17. Matsue, T.; Fujihira, M.; Osa, T. Anal. Chem. 1981, 53, 723. https://doi.org/10.1021/ac00227a037
  18. Nagase, S.; Kataoka, M.; Naganawa, R. Anal. Chem. 1990, 62,1252. https://doi.org/10.1021/ac00212a011
  19. Divakar, S.; Maheswaran, M. J. Inc. Phenomen. Mole. Recogni.Chem. 1997, 27, 2.
  20. Kim, S. H.; Won, M.-S.; Shim, Y.-B. Bull. Korean Chem. Soc.1996, 17, 342.
  21. Swanson, M. A.; Cori, C. F. J. Biol. Chem. 1948, 172, 797.
  22. American Public Health Association Standard Method 5530D, Standard Methods for the Examination of Water and Wastewater, 19th ed.; APHA: Washington, 1995.

Cited by

  1. Electrochemical Study of Iodide in the Presence of Phenol and o-Cresol: Application to the Catalytic Determination of Phenol and o-Cresol vol.4, pp.11, 2004, https://doi.org/10.3390/s41100170
  2. Opportunities to improve selectivity of determining oxidoreductase substrate using artificial receptors vol.67, pp.5, 2012, https://doi.org/10.3103/S0027131412050021
  3. Amperometric biosensor precision improvement: application to organophosphorus pesticide determination vol.6, pp.20, 2014, https://doi.org/10.1039/C4AY01792G
  4. Carbon materials for analytical electrochemistry: printed carbon materials and composites vol.30, pp.sup7, 2015, https://doi.org/10.1179/1753555714Y.0000000213
  5. Electrochemical sensors and biosensors based on heterogeneous carbon materials vol.140, pp.8, 2009, https://doi.org/10.1007/s00706-009-0131-9
  6. Antipassivating Electrochemical Process of Glassy Carbon Electrode (GCE) Dedicated to the Oxidation of Nitrophenol Compounds vol.23, pp.7, 2002, https://doi.org/10.1002/elan.201100082
  7. Electrochemical Characterization and Determination of Phenol and Chlorophenols by Voltammetry at Single Wall Carbon Nanotube/Poly(3,4-ethylenedioxythiophene) Modified Screen Printed Carbon Electrode vol.2015, pp.None, 2002, https://doi.org/10.1155/2015/459246