References
- Rao, K. V.; Cullen, W. P. Antibiot. Ann. 1968, 950, 1959.
- Johnson, F.; Shaikh, I. A.; Grollmann, A. P. J. Med. Chem. 1986,29, 1329. https://doi.org/10.1021/jm00158a002
- Inouye, Y.; Take, Y.; Oogose, K. J. Antibiotics 1987, 40, 105. https://doi.org/10.7164/antibiotics.40.105
- Rao, K. V. Cancer Chemother. Rep. 1974, part 2, 4, 11.
- Hackethal, C. A.; Golbey, P. B.; Tan, C. T. C.; Karnofsky, D. A.;Burchenal, J. H. Antibiotic Cheother. 1961, 11, 178.
- Humphrey, E. W.; Blank, N.; Medrek, T. J. Cancer Chemother.Rep. 1961, 12, 99.
- Rivers, S. L.; Wittington, R. M.; Spencer, H. H.; Pento, M. E.Cancer 1966, 19, 1377. https://doi.org/10.1002/1097-0142(196610)19:10<1377::AID-CNCR2820191008>3.0.CO;2-L
- Kremer, W. B.; Laszlo, J. Cancer Chemotheraphy Rep. 1967, 51,19.
- Foye, W. O. Cancer Chemotherapeutic Agents; American ChemicalSociety press: Washington, U.S.A., 1995; 645.
- Lown, J. W.; Joshus, A. V.; Lee, J. S. Biochemistry 1982, 21, 419. https://doi.org/10.1021/bi00532a001
- Yamashita, Y.; Tsubata, Y.; Suzuki, T.; Miyashi, T.; Mukai, T.;Tanaka, Y. Chem. Lett. 1990, 1990, 445.
- Kuo, S. C.; Ibuka, T.; Huang, L. J.; Lednica, D. J. Med. Chem.1996, 39, 1447. https://doi.org/10.1021/jm950247k
- Suh, M. E.; Kang, M. J.; Yoo, H. W.; Park, S. Y.; Lee, C. O.Bioorg. & Med. Chem. 2000, 8, 2079. https://doi.org/10.1016/S0968-0896(00)00132-2
- Moore, M. H.; Hunter, W. H.; Kennard, O. J. Mol. Biol. 1987,206, 693. https://doi.org/10.1016/0022-2836(89)90577-9
- HQSAR., Version 1.0; Tripos. Inc.: St. Louis, MO, 1999.
- Winkler, D. A.; Burden, T. R. Quant. Struct. Act. Relat. 1998, 17,224. https://doi.org/10.1002/(SICI)1521-3838(199806)17:03<224::AID-QSAR224>3.3.CO;2-Y
- Cramer, R. D., III; Patterson, D. E.; Bunce, J. D. J. Am. Chem.Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
- Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 24,4130. https://doi.org/10.1021/jm00050a010
- So, S. S.; Karplus, M. J. Med. Chem. 1997, 40, 4360. https://doi.org/10.1021/jm970488n
- Malinowski, E. R.; Howery, D. G. Factor Analysis in Chemistry;Wiley: New York, 1980.
Cited by
- Bound Ligand Conformer Revealed by Flexible Structure Alignment in Absence of Crystal Structures: Indirect Drug Design Probed for HIV-1 Protease Inhibitors vol.5, pp.3, 2009, https://doi.org/10.1021/ct8004886
- 3D-QSAR Study for Checkpoint Kinase 2 Inhibitors through Pharmacophore Hypotheses pp.20100221, 2013, https://doi.org/10.7763/IJCEA.2013.V4.263
- MTD-comsia modelling of HMG-CoA reductase inhibitors vol.76, pp.1, 2011, https://doi.org/10.2298/JSC100601019D
- 2D and 3D QSAR studies of diarylpyrimidine HIV-1 reverse transcriptase inhibitors vol.22, pp.11, 2008, https://doi.org/10.1007/s10822-008-9217-4
- Ligand-based QSAR Studies on the Indolinones Derivatives as Inhibitors of the Protein Tyrosine Kinase of Fibroblast Growth Factor Receptor by CoMFA and CoMSIA vol.25, pp.12, 2002, https://doi.org/10.5012/bkcs.2004.25.12.1801
- Synthesis of novel aminoquinonoid analogues of diospyrin and evaluation of their inhibitory activity against murine and human cancer cells vol.43, pp.9, 2002, https://doi.org/10.1016/j.ejmech.2007.11.028
- Simple Screening Method for Double-strand DNA Binders Using Hairpin DNA-modified Magnetic Beads vol.32, pp.1, 2002, https://doi.org/10.5012/bkcs.2011.32.1.247
- Novel Design Strategy for Checkpoint Kinase 2 Inhibitors Using Pharmacophore Modeling, Combinatorial Fusion, and Virtual Screening vol.2014, pp.None, 2002, https://doi.org/10.1155/2014/359494
- Three Dimensional Quantitative Structure Activity Relationship and Pharmacophore Modeling of Tacrine Derivatives as Acetylcholinesterase Inhibitors in Alzheimer's Treatment vol.16, pp.2, 2020, https://doi.org/10.2174/1573406415666190513100646