References
- Surface Enhanced Raman Scattering; Chang, R. K., Furtak, T. E. Eds.; Plenum: New York, 1982.
- Creighton, J. A. Raman Spectroscopy of Adsorbates at Metal Surface in Vibrational Spectroscopy of Adsorbates; springer series in chemical physics; Wills, R. F., Ed.; Springer: Berlin, Heidelberg, New York, 1980; vol. 15, p 145. https://doi.org/10.1007/978-3-642-88644-7_9
- Joo, S. W.; Han, S. W.; Kim, K. J. Colloid Interface Sci. 2001, 240, 391. https://doi.org/10.1006/jcis.2001.7692
- Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull. Korean Chem. Soc. 2001, 22, 318.
- Zeman, E. J.; Schatz, G. C. J. Phys. Chem. 1987, 91, 634. https://doi.org/10.1021/j100287a028
- Matejka, P.; Vlckova, B.; Volhlichol, J.; Pancoska, P.; Banmrnk, V. J. Phys. Chem. 1992, 96, 1361. https://doi.org/10.1021/j100182a063
- Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
- Moskovits, M.; Suh, J. S. J. Phys. Chem. 1984, 88, 5526. https://doi.org/10.1021/j150667a013
- Suh, J. S. J. Korean Chem. Soc. 1992, 36, 327.
- Yim, Y. H.; Kim, K.; Kim, M. S. J. Phys. Chem. 1990, 94, 2552. https://doi.org/10.1021/j100369a061
- Cardona, M.; Guntherodt, G. Light Scattering in Solids; Springer: Berlin, 1984; Vol. IV.
- Matthews, G. A.; Hislop, E. C. Application Technology for Crop Protection; 1993.
- Daruich, J.; Zirulnik, F.; Gimenez, M. S. Environ. Res. 2001, 85, 226. https://doi.org/10.1006/enrs.2000.4229
- Anderson, M. R.; Erans, D. H. J. Am. Chem. Soc. 1988, 110, 6612. https://doi.org/10.1021/ja00228a003
- Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215. https://doi.org/10.1021/ja00457a071
- Lee, S. B.; Kim, K.; Kim, M. S. J. Phys. Chem. 1992, 96, 9940. https://doi.org/10.1021/j100203a066
- Watanabe, T.; Maeda, H. J. Phys. Chem. 1989, 93, 3258. https://doi.org/10.1021/j100345a075
- Macomber, S. H.; Furtak, T. E. Chem. Phys. Lett. 1982, 90(1), 59. https://doi.org/10.1016/0009-2614(82)83325-3
- Joo, T. H.; Yim, Y. H.; Kim, K.; Kim, M. S. J. Phys. Chem. 1989, 93, 1422. https://doi.org/10.1021/j100341a048
- Kwon, C. K.; Kim, K.; Kim, M. S.; Lee, S. B. Bull. Korean Chem. Soc. 1989, 10(3), 254.
- Nichols, H.; Hexter, R. M. J. Chem. Phys. 1981, 74, 2059. https://doi.org/10.1063/1.441252
- Weaver, M. J.; Hupp, J. T. J. Electroanal. Chem. 1984, 160, 321. https://doi.org/10.1016/S0022-0728(84)80135-7
- Wetzel, H.; Gerischer, H.; Pettinger, B. Chem. Phys. Lett. 1981, 78, 392. https://doi.org/10.1016/0009-2614(81)80040-1
- Loo, B. H. Chem. Phys. Lett. 1982, 89(4), 346. https://doi.org/10.1016/0009-2614(82)83513-6
- Pettinger, B.; Phillpott, M. R.; Gordon, J. G. J. Phys. Chem. 1981, 85, 2746. https://doi.org/10.1021/j150619a012
- Takahashi, M.; Furukwa, H.; Fujita, M.; Ito, M. J. Phys. Chem. 1987, 91, 5940. https://doi.org/10.1021/j100307a025
- Garrel, R. L.; Shaw, K. D.; Krimm, S. J. Chem. Phys. 1981, 75(8), 4155. https://doi.org/10.1063/1.442504
- Muniz-Miranda, M.; Sbrana, G. J. Raman Spectrosc. 1996, 27, 105. https://doi.org/10.1002/(SICI)1097-4555(199602)27:2<105::AID-JRS933>3.0.CO;2-L
- Sanches-Cortes, S.; Garcia-Ramos, J. V. J. Raman Spectrosc. 1992, 23, 61. https://doi.org/10.1002/jrs.1250230108
- Larkin, D.; Guyer, K. L.; Hupp, J. T.; Weaver, M. J. J. Electroanal. Chem. 1982, 138, 401. https://doi.org/10.1016/0022-0728(82)85091-2
- Kim, M.; Koichi, I. J. Phys. Chem. 1987, 91, 126. https://doi.org/10.1021/j100285a029
- Salaita, G. N.; Lu, F.; Languren-Davidson, L.; Hubbard, A. T. J. Electroanal. Chem. 1987, 229, 1. https://doi.org/10.1016/0022-0728(87)85127-6
Cited by
- Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles vol.136, pp.3, 2011, https://doi.org/10.1039/C0AN00594K
- Single clusters of self-assembled silver nanoparticles for surface-enhanced Raman scattering sensing of a dithiocarbamate fungicide vol.21, pp.40, 2011, https://doi.org/10.1039/c1jm12919h
- Quantification of purine basis in their mixtures at femto-molar concentration levels using FT-SERS vol.43, pp.8, 2011, https://doi.org/10.1002/jrs.3124
- Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels vol.84, pp.1, 2012, https://doi.org/10.1021/ac202452t
- Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring vol.5, pp.9, 2013, https://doi.org/10.1039/c3nr00631j
- Single-Step and Rapid Growth of Silver Nanoshells as SERS-Active Nanostructures for Label-Free Detection of Pesticides vol.6, pp.15, 2014, https://doi.org/10.1021/am502435x
- Template-Activated Strategy toward One-Step Coating Silica Colloidal Microspheres with Sliver vol.6, pp.2, 2014, https://doi.org/10.1021/am405096z
- –Ag composite microspheres and their SERS applications vol.6, pp.21, 2014, https://doi.org/10.1039/C4NR03301A
- Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection vol.17, pp.12, 2015, https://doi.org/10.1007/s11051-015-3286-9
- Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS) vol.49, pp.7, 2015, https://doi.org/10.1021/acs.est.5b00370
- Detection of Pesticides and Metabolites Using Surface-Enhanced Raman Spectroscopy (SERS): Acephate vol.69, pp.7, 2015, https://doi.org/10.1366/14-07594
- Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides vol.7, pp.12, 2015, https://doi.org/10.1021/acsami.5b01652
- Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement vol.7, pp.7, 2015, https://doi.org/10.1039/C4NR06429A
- Pseudotetranuclear Crystalline Compound: Synthesis, Structural Characterization, and Optical Properties vol.120, pp.46, 2016, https://doi.org/10.1021/acs.jpca.6b08158
- High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram vol.70, pp.7, 2016, https://doi.org/10.1177/0003702816652356
- Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods vol.9, pp.8, 2016, https://doi.org/10.1007/s12274-016-1117-7
- Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water vol.96, pp.15, 2016, https://doi.org/10.1080/03067319.2016.1272677
- Waste Fiber Powder Functionalized with Silver Nanoprism for Enhanced Raman Scattering Analysis vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-017-2118-5
- Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment vol.4, pp.11, 2017, https://doi.org/10.1039/C7EN00653E
- -NS@Ag-NP nanocomposite as a SERS nanosensor for ultrasensitive thiram detection vol.9, pp.25, 2017, https://doi.org/10.1039/C7NR01891F
- Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes vol.9, pp.45, 2017, https://doi.org/10.1021/acsami.7b13479
- core–shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering vol.24, pp.33, 2013, https://doi.org/10.1088/0957-4484/24/33/335501
- Recyclable surface-enhanced Raman scattering template based on nanoporous gold film/Si nanowire arrays vol.105, pp.1, 2014, https://doi.org/10.1063/1.4889850
- Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering vol.115, pp.21, 2014, https://doi.org/10.1063/1.4880956
- Silver Nanopartical over AuFON Substrate for Enhanced Raman Readout and Their Application in Pesticide Monitoring vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20046299
- Engineered plasmonic Thue-Morse nanostructures for LSPR detection of the pesticide Thiram vol.6, pp.5, 2017, https://doi.org/10.1515/nanoph-2016-0146
- New Routes to the Preparation of Silver-Doped Sol-Gel Films for a SERS Study vol.24, pp.11, 2002, https://doi.org/10.5012/bkcs.2003.24.11.1599
- The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy vol.25, pp.8, 2002, https://doi.org/10.5012/bkcs.2004.25.8.1211
- Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface vol.27, pp.4, 2002, https://doi.org/10.5012/bkcs.2006.27.4.545
- Dithiocarbamates: Functional and Versatile Linkers for the Formation of Self-Assembled Monolayers vol.22, pp.2, 2002, https://doi.org/10.1021/la052952u
- Solvent extraction followed by ultraviolet detection for investigation of tetramethylthiuram disulfide at soil-water interface vol.5, pp.4, 2002, https://doi.org/10.1007/bf03326052
- 은 양이온과 PVP의 상호작용에 대한 연구 vol.53, pp.5, 2002, https://doi.org/10.5012/jkcs.2009.53.5.565
- 은이 첨가된 생체 활성 세라믹 복합체 연구 vol.53, pp.6, 2002, https://doi.org/10.5012/jkcs.2009.53.6.761
- Surface-enhanced Raman spectroscopy of Omethoate adsorbed on silver surface vol.78, pp.1, 2002, https://doi.org/10.1016/j.saa.2010.09.018
- High performance Au/Ag core/shell bipyramids for determination of thiram based on surface‐enhanced Raman scattering vol.43, pp.10, 2002, https://doi.org/10.1002/jrs.4087
- Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates vol.4, pp.7, 2002, https://doi.org/10.1039/c3ra45935g
- Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables vol.88, pp.4, 2002, https://doi.org/10.1021/acs.analchem.5b03735
- Surface‐Enhanced Raman Spectra Promoted by a Finger Press in an All‐Solid‐State Flexible Energy Conversion and Storage Film vol.129, pp.10, 2002, https://doi.org/10.1002/ange.201610737
- Surface‐Enhanced Raman Spectra Promoted by a Finger Press in an All‐Solid‐State Flexible Energy Conversion and Storage Film vol.56, pp.10, 2017, https://doi.org/10.1002/anie.201610737
- Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media vol.90, pp.8, 2018, https://doi.org/10.1021/acs.analchem.8b00008
- A “drop‐wipe‐test” SERS method for rapid detection of pesticide residues in fruits vol.49, pp.3, 2002, https://doi.org/10.1002/jrs.5308
- Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates vol.18, pp.8, 2002, https://doi.org/10.3390/s18082726
- Surface-Enhanced Raman Spectroscopy (SERS) of Mancozeb and Thiamethoxam Assisted by Gold and Silver Nanostructures Produced by Laser Techniques on Paper vol.73, pp.3, 2002, https://doi.org/10.1177/0003702818816304
- One-Step Preparation Method of Flexible Metafilms on the Water-Oil Interface: Self-Assembly Surface Plasmon Structures for Surface-Enhanced Raman Scattering Detection vol.35, pp.13, 2019, https://doi.org/10.1021/acs.langmuir.8b04271
- A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram vol.186, pp.7, 2002, https://doi.org/10.1007/s00604-019-3579-2
- Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides vol.9, pp.3, 2002, https://doi.org/10.3390/bios9030111
- Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy vol.30, pp.38, 2019, https://doi.org/10.1088/1361-6528/ab2845
- A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring vol.144, pp.18, 2002, https://doi.org/10.1039/c9an01123d
- 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection vol.20, pp.19, 2019, https://doi.org/10.3390/ijms20194841
- Magnetic ferroferric oxide/phenolic resin/silver core-shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering vol.92, pp.1, 2002, https://doi.org/10.1007/s10971-019-05093-1
- A Portable Smartphone Platform Using a Ratiometric Fluorescent Paper Strip for Visual Quantitative Sensing vol.12, pp.11, 2002, https://doi.org/10.1021/acsami.9b20458
- Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue vol.31, pp.20, 2002, https://doi.org/10.1088/1361-6528/ab7100
- Electrochemical Evaluation of Pollutants in the Environment: Interaction Between the Metal Ions Zn(II) and Cu(II) with the Fungicide Thiram in Billings Dam vol.32, pp.7, 2020, https://doi.org/10.1002/elan.201900438
- Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy vol.326, pp.None, 2002, https://doi.org/10.1016/j.foodchem.2020.127009
- Cost-Effective Tween 80-Capped Copper Nanoparticles for Ultrasensitive Colorimetric Detection of Thiram Pesticide in Environmental Water Samples vol.2021, pp.None, 2002, https://doi.org/10.1155/2021/5513401
- Self-Cleaning-Mediated SERS Chip Coupled Chemometric Algorithms for Detection and Photocatalytic Degradation of Pesticides in Food vol.69, pp.5, 2002, https://doi.org/10.1021/acs.jafc.0c06513
- Application of surface-enhanced Raman scattering in rapid detection of dithiocarbamate pesticide residues in foods vol.558, pp.None, 2002, https://doi.org/10.1016/j.apsusc.2021.149740
- Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues vol.424, pp.None, 2002, https://doi.org/10.1016/j.cej.2021.130323
- Surface‐enhanced Raman scattering of thiram: Quantitative and theoretical analyses vol.52, pp.12, 2002, https://doi.org/10.1002/jrs.6222
- Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles vol.608, pp.p2, 2002, https://doi.org/10.1016/j.jcis.2021.10.133
- Stamplike flexible SERS substrate for in-situ rapid detection of thiram residues in fruits and vegetables vol.373, pp.no.pb, 2002, https://doi.org/10.1016/j.foodchem.2021.131570