DOI QR코드

DOI QR Code

SERS of Dithiocarbamate Pesticides Adsorbed on Silver Surface; Thiram


Abstract

In the present work, we studied thiram on silver surface by SERS. Investigations of disulfides with SERS revealed that the molecules undergo a surface reaction on silver, namely easy cleavage of the S-S bond. We believe that the two S atoms of resonance formed from the thiram may be chemisorbed strongly on Ag sol. This resonance form adheres perpendicularly to the Ag surface via the two S atoms, since the ${\delta}(CH3)$ and n (CN) mode perpendicular to the surface showed strong enhancement. The important roles of halide anion adsorption have been discussed and the pH effects of thiram on Ag sol in acidic, neutral, and alkaline conditions were examined.

Keywords

References

  1. Surface Enhanced Raman Scattering; Chang, R. K., Furtak, T. E. Eds.; Plenum: New York, 1982.
  2. Creighton, J. A. Raman Spectroscopy of Adsorbates at Metal Surface in Vibrational Spectroscopy of Adsorbates; springer series in chemical physics; Wills, R. F., Ed.; Springer: Berlin, Heidelberg, New York, 1980; vol. 15, p 145. https://doi.org/10.1007/978-3-642-88644-7_9
  3. Joo, S. W.; Han, S. W.; Kim, K. J. Colloid Interface Sci. 2001, 240, 391. https://doi.org/10.1006/jcis.2001.7692
  4. Jung, Y. M.; Lim, J. W.; Kim, E. R.; Lee, H.; Lee, M. S. Bull. Korean Chem. Soc. 2001, 22, 318.
  5. Zeman, E. J.; Schatz, G. C. J. Phys. Chem. 1987, 91, 634. https://doi.org/10.1021/j100287a028
  6. Matejka, P.; Vlckova, B.; Volhlichol, J.; Pancoska, P.; Banmrnk, V. J. Phys. Chem. 1992, 96, 1361. https://doi.org/10.1021/j100182a063
  7. Moskovits, M. Rev. Mod. Phys. 1985, 57, 783. https://doi.org/10.1103/RevModPhys.57.783
  8. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1984, 88, 5526. https://doi.org/10.1021/j150667a013
  9. Suh, J. S. J. Korean Chem. Soc. 1992, 36, 327.
  10. Yim, Y. H.; Kim, K.; Kim, M. S. J. Phys. Chem. 1990, 94, 2552. https://doi.org/10.1021/j100369a061
  11. Cardona, M.; Guntherodt, G. Light Scattering in Solids; Springer: Berlin, 1984; Vol. IV.
  12. Matthews, G. A.; Hislop, E. C. Application Technology for Crop Protection; 1993.
  13. Daruich, J.; Zirulnik, F.; Gimenez, M. S. Environ. Res. 2001, 85, 226. https://doi.org/10.1006/enrs.2000.4229
  14. Anderson, M. R.; Erans, D. H. J. Am. Chem. Soc. 1988, 110, 6612. https://doi.org/10.1021/ja00228a003
  15. Albrecht, M. G.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215. https://doi.org/10.1021/ja00457a071
  16. Lee, S. B.; Kim, K.; Kim, M. S. J. Phys. Chem. 1992, 96, 9940. https://doi.org/10.1021/j100203a066
  17. Watanabe, T.; Maeda, H. J. Phys. Chem. 1989, 93, 3258. https://doi.org/10.1021/j100345a075
  18. Macomber, S. H.; Furtak, T. E. Chem. Phys. Lett. 1982, 90(1), 59. https://doi.org/10.1016/0009-2614(82)83325-3
  19. Joo, T. H.; Yim, Y. H.; Kim, K.; Kim, M. S. J. Phys. Chem. 1989, 93, 1422. https://doi.org/10.1021/j100341a048
  20. Kwon, C. K.; Kim, K.; Kim, M. S.; Lee, S. B. Bull. Korean Chem. Soc. 1989, 10(3), 254.
  21. Nichols, H.; Hexter, R. M. J. Chem. Phys. 1981, 74, 2059. https://doi.org/10.1063/1.441252
  22. Weaver, M. J.; Hupp, J. T. J. Electroanal. Chem. 1984, 160, 321. https://doi.org/10.1016/S0022-0728(84)80135-7
  23. Wetzel, H.; Gerischer, H.; Pettinger, B. Chem. Phys. Lett. 1981, 78, 392. https://doi.org/10.1016/0009-2614(81)80040-1
  24. Loo, B. H. Chem. Phys. Lett. 1982, 89(4), 346. https://doi.org/10.1016/0009-2614(82)83513-6
  25. Pettinger, B.; Phillpott, M. R.; Gordon, J. G. J. Phys. Chem. 1981, 85, 2746. https://doi.org/10.1021/j150619a012
  26. Takahashi, M.; Furukwa, H.; Fujita, M.; Ito, M. J. Phys. Chem. 1987, 91, 5940. https://doi.org/10.1021/j100307a025
  27. Garrel, R. L.; Shaw, K. D.; Krimm, S. J. Chem. Phys. 1981, 75(8), 4155. https://doi.org/10.1063/1.442504
  28. Muniz-Miranda, M.; Sbrana, G. J. Raman Spectrosc. 1996, 27, 105. https://doi.org/10.1002/(SICI)1097-4555(199602)27:2<105::AID-JRS933>3.0.CO;2-L
  29. Sanches-Cortes, S.; Garcia-Ramos, J. V. J. Raman Spectrosc. 1992, 23, 61. https://doi.org/10.1002/jrs.1250230108
  30. Larkin, D.; Guyer, K. L.; Hupp, J. T.; Weaver, M. J. J. Electroanal. Chem. 1982, 138, 401. https://doi.org/10.1016/0022-0728(82)85091-2
  31. Kim, M.; Koichi, I. J. Phys. Chem. 1987, 91, 126. https://doi.org/10.1021/j100285a029
  32. Salaita, G. N.; Lu, F.; Languren-Davidson, L.; Hubbard, A. T. J. Electroanal. Chem. 1987, 229, 1. https://doi.org/10.1016/0022-0728(87)85127-6

Cited by

  1. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles vol.136, pp.3, 2011, https://doi.org/10.1039/C0AN00594K
  2. Single clusters of self-assembled silver nanoparticles for surface-enhanced Raman scattering sensing of a dithiocarbamate fungicide vol.21, pp.40, 2011, https://doi.org/10.1039/c1jm12919h
  3. Quantification of purine basis in their mixtures at femto-molar concentration levels using FT-SERS vol.43, pp.8, 2011, https://doi.org/10.1002/jrs.3124
  4. Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels vol.84, pp.1, 2012, https://doi.org/10.1021/ac202452t
  5. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring vol.5, pp.9, 2013, https://doi.org/10.1039/c3nr00631j
  6. Single-Step and Rapid Growth of Silver Nanoshells as SERS-Active Nanostructures for Label-Free Detection of Pesticides vol.6, pp.15, 2014, https://doi.org/10.1021/am502435x
  7. Template-Activated Strategy toward One-Step Coating Silica Colloidal Microspheres with Sliver vol.6, pp.2, 2014, https://doi.org/10.1021/am405096z
  8. –Ag composite microspheres and their SERS applications vol.6, pp.21, 2014, https://doi.org/10.1039/C4NR03301A
  9. Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection vol.17, pp.12, 2015, https://doi.org/10.1007/s11051-015-3286-9
  10. Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS) vol.49, pp.7, 2015, https://doi.org/10.1021/acs.est.5b00370
  11. Detection of Pesticides and Metabolites Using Surface-Enhanced Raman Spectroscopy (SERS): Acephate vol.69, pp.7, 2015, https://doi.org/10.1366/14-07594
  12. Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides vol.7, pp.12, 2015, https://doi.org/10.1021/acsami.5b01652
  13. Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement vol.7, pp.7, 2015, https://doi.org/10.1039/C4NR06429A
  14. Pseudotetranuclear Crystalline Compound: Synthesis, Structural Characterization, and Optical Properties vol.120, pp.46, 2016, https://doi.org/10.1021/acs.jpca.6b08158
  15. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram vol.70, pp.7, 2016, https://doi.org/10.1177/0003702816652356
  16. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods vol.9, pp.8, 2016, https://doi.org/10.1007/s12274-016-1117-7
  17. Filter-based surface-enhanced Raman spectroscopy for rapid and sensitive detection of the fungicide ferbam in water vol.96, pp.15, 2016, https://doi.org/10.1080/03067319.2016.1272677
  18. Waste Fiber Powder Functionalized with Silver Nanoprism for Enhanced Raman Scattering Analysis vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-017-2118-5
  19. Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment vol.4, pp.11, 2017, https://doi.org/10.1039/C7EN00653E
  20. -NS@Ag-NP nanocomposite as a SERS nanosensor for ultrasensitive thiram detection vol.9, pp.25, 2017, https://doi.org/10.1039/C7NR01891F
  21. Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes vol.9, pp.45, 2017, https://doi.org/10.1021/acsami.7b13479
  22. core–shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering vol.24, pp.33, 2013, https://doi.org/10.1088/0957-4484/24/33/335501
  23. Recyclable surface-enhanced Raman scattering template based on nanoporous gold film/Si nanowire arrays vol.105, pp.1, 2014, https://doi.org/10.1063/1.4889850
  24. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering vol.115, pp.21, 2014, https://doi.org/10.1063/1.4880956
  25. Silver Nanopartical over AuFON Substrate for Enhanced Raman Readout and Their Application in Pesticide Monitoring vol.20, pp.4, 2015, https://doi.org/10.3390/molecules20046299
  26. Engineered plasmonic Thue-Morse nanostructures for LSPR detection of the pesticide Thiram vol.6, pp.5, 2017, https://doi.org/10.1515/nanoph-2016-0146
  27. New Routes to the Preparation of Silver-Doped Sol-Gel Films for a SERS Study vol.24, pp.11, 2002, https://doi.org/10.5012/bkcs.2003.24.11.1599
  28. The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy vol.25, pp.8, 2002, https://doi.org/10.5012/bkcs.2004.25.8.1211
  29. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface vol.27, pp.4, 2002, https://doi.org/10.5012/bkcs.2006.27.4.545
  30. Dithiocarbamates: Functional and Versatile Linkers for the Formation of Self-Assembled Monolayers vol.22, pp.2, 2002, https://doi.org/10.1021/la052952u
  31. Solvent extraction followed by ultraviolet detection for investigation of tetramethylthiuram disulfide at soil-water interface vol.5, pp.4, 2002, https://doi.org/10.1007/bf03326052
  32. 은 양이온과 PVP의 상호작용에 대한 연구 vol.53, pp.5, 2002, https://doi.org/10.5012/jkcs.2009.53.5.565
  33. 은이 첨가된 생체 활성 세라믹 복합체 연구 vol.53, pp.6, 2002, https://doi.org/10.5012/jkcs.2009.53.6.761
  34. Surface-enhanced Raman spectroscopy of Omethoate adsorbed on silver surface vol.78, pp.1, 2002, https://doi.org/10.1016/j.saa.2010.09.018
  35. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface‐enhanced Raman scattering vol.43, pp.10, 2002, https://doi.org/10.1002/jrs.4087
  36. Periodic silver nanodishes as sensitive and reproducible surface-enhanced Raman scattering substrates vol.4, pp.7, 2002, https://doi.org/10.1039/c3ra45935g
  37. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables vol.88, pp.4, 2002, https://doi.org/10.1021/acs.analchem.5b03735
  38. Surface‐Enhanced Raman Spectra Promoted by a Finger Press in an All‐Solid‐State Flexible Energy Conversion and Storage Film vol.129, pp.10, 2002, https://doi.org/10.1002/ange.201610737
  39. Surface‐Enhanced Raman Spectra Promoted by a Finger Press in an All‐Solid‐State Flexible Energy Conversion and Storage Film vol.56, pp.10, 2017, https://doi.org/10.1002/anie.201610737
  40. Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media vol.90, pp.8, 2018, https://doi.org/10.1021/acs.analchem.8b00008
  41. A “drop‐wipe‐test” SERS method for rapid detection of pesticide residues in fruits vol.49, pp.3, 2002, https://doi.org/10.1002/jrs.5308
  42. Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates vol.18, pp.8, 2002, https://doi.org/10.3390/s18082726
  43. Surface-Enhanced Raman Spectroscopy (SERS) of Mancozeb and Thiamethoxam Assisted by Gold and Silver Nanostructures Produced by Laser Techniques on Paper vol.73, pp.3, 2002, https://doi.org/10.1177/0003702818816304
  44. One-Step Preparation Method of Flexible Metafilms on the Water-Oil Interface: Self-Assembly Surface Plasmon Structures for Surface-Enhanced Raman Scattering Detection vol.35, pp.13, 2019, https://doi.org/10.1021/acs.langmuir.8b04271
  45. A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram vol.186, pp.7, 2002, https://doi.org/10.1007/s00604-019-3579-2
  46. Flexible PET/ITO/Ag SERS Platform for Label-Free Detection of Pesticides vol.9, pp.3, 2002, https://doi.org/10.3390/bios9030111
  47. Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy vol.30, pp.38, 2019, https://doi.org/10.1088/1361-6528/ab2845
  48. A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring vol.144, pp.18, 2002, https://doi.org/10.1039/c9an01123d
  49. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection vol.20, pp.19, 2019, https://doi.org/10.3390/ijms20194841
  50. Magnetic ferroferric oxide/phenolic resin/silver core-shell nanocomposite as recyclable substrates for enhancing surface-enhanced Raman scattering vol.92, pp.1, 2002, https://doi.org/10.1007/s10971-019-05093-1
  51. A Portable Smartphone Platform Using a Ratiometric Fluorescent Paper Strip for Visual Quantitative Sensing vol.12, pp.11, 2002, https://doi.org/10.1021/acsami.9b20458
  52. Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue vol.31, pp.20, 2002, https://doi.org/10.1088/1361-6528/ab7100
  53. Electrochemical Evaluation of Pollutants in the Environment: Interaction Between the Metal Ions Zn(II) and Cu(II) with the Fungicide Thiram in Billings Dam vol.32, pp.7, 2020, https://doi.org/10.1002/elan.201900438
  54. Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy vol.326, pp.None, 2002, https://doi.org/10.1016/j.foodchem.2020.127009
  55. Cost-Effective Tween 80-Capped Copper Nanoparticles for Ultrasensitive Colorimetric Detection of Thiram Pesticide in Environmental Water Samples vol.2021, pp.None, 2002, https://doi.org/10.1155/2021/5513401
  56. Self-Cleaning-Mediated SERS Chip Coupled Chemometric Algorithms for Detection and Photocatalytic Degradation of Pesticides in Food vol.69, pp.5, 2002, https://doi.org/10.1021/acs.jafc.0c06513
  57. Application of surface-enhanced Raman scattering in rapid detection of dithiocarbamate pesticide residues in foods vol.558, pp.None, 2002, https://doi.org/10.1016/j.apsusc.2021.149740
  58. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues vol.424, pp.None, 2002, https://doi.org/10.1016/j.cej.2021.130323
  59. Surface‐enhanced Raman scattering of thiram: Quantitative and theoretical analyses vol.52, pp.12, 2002, https://doi.org/10.1002/jrs.6222
  60. Three-dimensional surface-enhanced Raman scattering substrates constructed by integrating template-assisted electrodeposition and post-growth of silver nanoparticles vol.608, pp.p2, 2002, https://doi.org/10.1016/j.jcis.2021.10.133
  61. Stamplike flexible SERS substrate for in-situ rapid detection of thiram residues in fruits and vegetables vol.373, pp.no.pb, 2002, https://doi.org/10.1016/j.foodchem.2021.131570