DOI QR코드

DOI QR Code

Halogenated Cleavage of Epoxides into Halohydrins in the Presence of a Series of Diamine Podands as Catalyst with Elemental Idoine and Bromine


Abstract

The ring opening of epoxides with elemental iodine and bromine in the presence of three diamine podands 7-9 as new catalysts affords vicinal iodo alcohols and bromo alcohols in high yields. This new procedure occurs regioselectively under neutral and mild conditions in various aprotic solvents even when sensitive functional groups are presented.

Keywords

References

  1. Bonini, C.; Righi, G. Synthesis 1994, 225.
  2. Shimizu, M.; Yoshida, A.; Fujisawa, T. Synlett 1992, 204.
  3. Iranpoor, N.; Mohammadpour Baltork, I. Synth. Commun. 1990, 20, 2798.
  4. Smith, J. G. Synthesis 1984, 629.
  5. Kricheldorf, H. R.; Morber, G.; Regel, W. Synthesis 1981, 383.
  6. Andrews, G. C.; Grawford, T. C.; Contilio, L. G. Tetrahedron Lett. 1981, 22, 3803. https://doi.org/10.1016/S0040-4039(01)91312-7
  7. Detty, M. R.; Seidler, M. D. Tetrahedron Lett. 1982, 23, 2543. https://doi.org/10.1016/S0040-4039(00)87391-8
  8. Palumbo, G.; Ferreri, C.; Caputo, R. Tetrahedron Lett. 1983, 24, 1307 https://doi.org/10.1016/S0040-4039(00)81642-1
  9. Palumbo, G.; Ferreri, C.; Caputo, R. Synthesis 1986, 499.
  10. Guindon, Y.; Therien, M.; Girard, Y.; Yoakim, C. J. Org. Chem. 1987, 52, 1680. https://doi.org/10.1021/jo00385a007
  11. Joshi, N. N.; Srebnik, M.; Brown, H. C. J. Am. Chem. Soc. 1988, 110, 6246. https://doi.org/10.1021/ja00226a050
  12. Bell, T. W.; Ciaccio, J. A. Tetrahedron Lett. 1986, 27, 827. https://doi.org/10.1016/S0040-4039(00)84111-8
  13. Bovicelli, P.; Mincione, E.; Orttagi, G. Tetrahedron Lett. 1991, 32, 3719. https://doi.org/10.1016/S0040-4039(00)79777-2
  14. Ciaccio, J. A.; Heller, E.; Talbot, A. Synlett 1991, 248.
  15. Guo, Z. X.; Haines, A. H.; Taylor, R. J. K. Synlett 1993, 607.
  16. Bajwa, J. S.; Anderson, R. C. Tetrahedron Lett. 1991, 32, 3021. https://doi.org/10.1016/0040-4039(91)80676-W
  17. Kotsuki, H.; Shimanouchi, T. Tetrahedron Lett. 1996, 37, 1845. https://doi.org/10.1016/0040-4039(96)00159-1
  18. Konaklieva, M. I.; Dahi, M. L.; Turos, E. Tetrahedron Lett. 1992, 33, 7093 https://doi.org/10.1016/S0040-4039(00)60844-4
  19. Vogtle, F.; Weber, E. Angew. Chem. Int. Ed. Engl. 1979, 18, 753. https://doi.org/10.1002/anie.197907531
  20. Sharghi, H.; Massah, A. R.; Eshghi, H.; Niknam, K. J. Org. Chem. 1998, 63, 1455. https://doi.org/10.1021/jo971453y
  21. Sharghi, H.; Niknam, K.; Pooyan, M. Tetrahedron 2001, 57, 6057. https://doi.org/10.1016/S0040-4020(01)00443-4
  22. Gangali, M. R.; Eshghi, H.; Sharghi, H.; Shamsipur, M. J. Electroanal. Chem. 1996, 405, 177. https://doi.org/10.1016/0022-0728(95)04413-2
  23. Sharghi, H.; Massah, A. R.; Abedi, M. Talanta 1999, 49, 531. https://doi.org/10.1016/S0039-9140(99)00011-9
  24. Dawe, R. D.; Molinski, T. F.; Turner, J. V. Tetrahedron Lett. 1984, 25, 2061. https://doi.org/10.1016/S0040-4039(01)90113-3
  25. Chini, M.; Crotti, P.; Gardelli, C.; Macchia, F. Tetrahedron 1992, 48, 3805. https://doi.org/10.1016/S0040-4020(01)92271-9
  26. Dela Mare, P. B. D.; Bolton, R. Elctrophilic Addition to Unsaturated Systems; Elsevier Scientefic: Amsterdam, 1996; p. 132.
  27. Eisch, J. J.; Liu, Z. R.; Ma, X.; Zheng, G. X. J. Org. Chem. 1992, 57, 5140. https://doi.org/10.1021/jo00045a026
  28. Semnani, A.; Shamsipur, M. J. Chem. Soc. Dalton Trans. 1996, 2215.
  29. Hopkins, H. P.; Jahagirdar, D. V.; Windler, F. J. Phys. Chem. 1978, 82, 1254. https://doi.org/10.1021/j100500a012
  30. Nour, E. M.; Shahad, L. M. A. Spectrochim. Acta, Part A 1988, 44a, 1277.
  31. Nour, E. M. Spectrochim. Acta, part A 1991, 47a, 473.
  32. Lang, R. P. J. Phys. Chem. 1974, 78, 1657. https://doi.org/10.1021/j100609a012
  33. Andrews, L. J.; Prochaska, E. S.; Loewenschuss, A. Inorg. Chem. 1980, 19, 463. https://doi.org/10.1021/ic50204a036
  34. Mizuno, M.; Tanaka, J.; Harada, I. J. Phys. Chem. 1981, 85, 1789. https://doi.org/10.1021/j150613a006
  35. Serguchev, Y. A.; Petrenko, T. I. Teor. Eksp. Khim. 1977, 13, 705.
  36. Andrews, L. J.; Keefer, R. M. J. Org. Chem. 1987, 52, 2690. https://doi.org/10.1021/jo00389a011
  37. Mizuno, M.; Tanaka, J.; Harada, I. J. Phys. Chem. 1981, 85, 1789. https://doi.org/10.1021/j150613a006
  38. Dutasta, J.; Declercq, J.; Calderon, C. J. Am. Chem. Soc. 1989, 111, 7136. https://doi.org/10.1021/ja00200a036
  39. Iranpoor, N.; Kazemi, F.; Salehi, P. Synth. Commun. 1997, 27, 1247. https://doi.org/10.1080/00397919708003362
  40. Masuda, H.; Takase, K.; Nishio, M.; Hasegavw, A.; Nishiyama, Y.; Ishii, Y. J. Org. Chem. 1994, 59, 5550. https://doi.org/10.1021/jo00098a012
  41. Guss, C. O.; Rosenthal, R. J. Am. Chem. Soc. 1955, 77, 2549.

Cited by

  1. Regioselective monochloro substitution in carbohydrates and non-sugar alcohols via Mitsunobu reaction: applications in the synthesis of reboxetine vol.11, pp.36, 2013, https://doi.org/10.1039/c3ob40853a
  2. Synthesis of Poly(glycidyl 2-ylidene-acetate) and Functionalization by Nucleophilic Ring-Opening Reactions vol.50, pp.4, 2017, https://doi.org/10.1021/acs.macromol.6b02465
  3. A potent larvicidal agent against Aedes aegypti mosquito from cardanol vol.89, pp.1 suppl, 2017, https://doi.org/10.1590/0001-3765201720160615
  4. H2TPP Organocatalysis in Mild and Highly Regioselective Ring Opening of Epoxides to Halo Alcohols by Means of Halogen Elements vol.17, pp.5, 2012, https://doi.org/10.3390/molecules17055508
  5. Nucleophilic ring-opening of epoxides: trends in β-substituted alcohols synthesis vol.15, pp.9, 2018, https://doi.org/10.1007/s13738-018-1400-5
  6. Synthesis of Benzodioxepinone Analoguesvia a Novel Synthetic Route with Qualitative Olfactory Evaluation vol.90, pp.5, 2007, https://doi.org/10.1002/hlca.200790085
  7. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications vol.20, pp.S1, 2009, https://doi.org/10.1007/s10856-008-3557-4
  8. Halogenated Cleavage of Epoxides into Halohydrins in the Presence of a Series of Diamine Podands as Catalyst with Elemental Iodine and Bromine. vol.34, pp.17, 2002, https://doi.org/10.1002/chin.200317045
  9. A facile conversion of epoxides to halohydrins with elemental halogen using isonicotinic hydrazide (isoniazide) as a new catalyst vol.215, pp.1, 2004, https://doi.org/10.1016/j.molcata.2004.01.019
  10. Methimazole-disulfide as an Anti-Thyroid Drug Metabolite Catalyzed the Highly Regioselective Conversion of Epoxides to Halohydrins with Elemental Halogens vol.29, pp.1, 2002, https://doi.org/10.5012/bkcs.2008.29.1.051