DOI QR코드

DOI QR Code

Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations


Abstract

In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes ($C_{12}$-$C_{44}$) in a canonical (NVT) ensemble at several temperatures using molecular dynamics simulations. For these n-alkanes of small chain length n, the chains are clearly <$R_{ee}^2$>/6<$R_g^2$>>1 and non-Gaussian. This result implies that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime, though the ratio becomes close to the unity as n increases. Calculated self-diffusion constants $D_{self}$ are comparable with experimental results and the Arrhenius plot of self-diffusion constants versus inverse temperature shows a different temperature dependence of diffusion on the chain length. The global rotational motion of n-alkanes is examined by characterizing the orientation relaxation of the end-to-end vector and it is found that the ratio ${\tau}1/{\tau}2$ is less than 3, the value expected for a isotropically diffusive rotational process. The friction constants ${\xi}$of the whole molecules of n-alkanes are calculated directly from the force auto-correlation (FAC) functions and compared with the monomeric friction constants ${\xi}_D$ extracted from $D_{self}$. Both the friction constants give a correct qualitative trends: decrease with increasing temperature and increase with increasing chain length. The friction constant calculated from the FAC's decreases very slowly with increasing temperature, while the monomeric friction constant varies rapidly with temperature. By considering the orientation relaxation of local vectors and diffusion of each site, it is found that rotational and translational diffusions of the ends are faster than those of the center.

Keywords

References

  1. Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980.
  2. Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261. https://doi.org/10.1007/BFb0050985
  3. Lodge, T. P.; Rotstein, N. A.; Prager, S. Adv. Chem. Phys. 1990, 9, 1.
  4. De Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, New York, 1979.
  5. Fleisher, G. Polym. Bull. (Berlin) 1983, 9, 152.
  6. Pearson, D. S.; Ver Strate, G.; von Meerwall, E.; Schilling, F. C. Macromolecules 1987, 20, 1133. https://doi.org/10.1021/ma00171a044
  7. Von Meerwall, E.; Beckman, S.; Jang, J.; Mattice, W. L. J. Chem. Phys. 1998, 108, 4299. https://doi.org/10.1063/1.475829
  8. Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N. Macromolecules 1998, 31, 7934. https://doi.org/10.1021/ma980698p
  9. Mondello, M.; Grest, G. S.; Webb, E. B.; Peczak, P. J. Chem. Phys. 1998, 109, 798. https://doi.org/10.1063/1.476619
  10. Park, H. S.; Chang, T.; Lee, S. H. J. Chem. Phys. 2000, 113, 5502. https://doi.org/10.1063/1.1289820
  11. Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A 1983, 28, 1016. https://doi.org/10.1103/PhysRevA.28.1016
  12. Simmons, A. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92. https://doi.org/10.1016/0009-2614(86)80176-2
  13. Siepmann, J. I.; Karaborni, S.; Smit, B. Nature (London) 1993, 365, 330. https://doi.org/10.1038/365330a0
  14. Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995, 102, 2126. https://doi.org/10.1063/1.469563
  15. Mundy, C. J.; Siepmann, J. I.; Klein, M. L. J. Chem. Phys. 1995, 102, 3376. https://doi.org/10.1063/1.469211
  16. Cui, S. T.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 104, 255. https://doi.org/10.1063/1.470896
  17. Cui, S. T.; Gupta, S. A.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 105, 1214.
  18. Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106, 6638. https://doi.org/10.1021/ja00334a030
  19. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Englewood Cliffs, NJ; Prentice-Hall, 1971.
  20. Andersen, H. J. Comput. Phys. 1984, 52, 24. https://doi.org/10.1016/0021-9991(83)90014-1
  21. McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 1976.
  22. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156. https://doi.org/10.1063/1.470344
  23. Baschnagel, J.; Qin, K.; Paul, W.; Binder, K. Macromolecules 1992, 25, 3117. https://doi.org/10.1021/ma00038a015
  24. Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem. Phys. 1994, 100, 1684 https://doi.org/10.1063/1.466596
  25. Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem. Phys. 1996, 104, 2078. https://doi.org/10.1063/1.470964
  26. Paul, W.; Smith, G. D.; Yoon, D. Y. Macromolecules 1997, 30, 7772. https://doi.org/10.1021/ma971184d
  27. Boothroyd, A.; Rennie, A. R.; Boothroyd, C. B. Europhys. Lett. 1991, 15, 715. https://doi.org/10.1209/0295-5075/15/7/004
  28. Goldstein, Classical Mechanics; Addison-Wesley: Harvard University, 1974;, p 155.
  29. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156. https://doi.org/10.1063/1.470344
  30. Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 94, 5650 https://doi.org/10.1063/1.460475
  31. Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 95, 509. https://doi.org/10.1063/1.461451
  32. Nederbragt, G. W.; Boelhouwer, J. W. M. Physica 1947, 13, 305. https://doi.org/10.1016/0031-8914(47)90002-5
  33. Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7161.
  34. Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon: Oxford, 1986.
  35. Debye, P. Polar Molecules; Dover: New York, 1929.
  36. Berne, B.; Pecora, R. Dynamic Light Scattering; Wiley: New York, 1976.
  37. Cohen, M. H.; Tumbull, D. J. Chem. Phys. 1959, 31, 1164. https://doi.org/10.1063/1.1730566
  38. Ciccotti, G.: Ferrario, M.: Hynes, J. T.: Kapral, R. J. Chem. Phys. 1990, 93, 7137. https://doi.org/10.1063/1.459437
  39. Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306

Cited by

  1. (0001) Surface vol.111, pp.4, 2007, https://doi.org/10.1021/jp065534m
  2. vol.36, pp.4, 2015, https://doi.org/10.1002/bkcs.10218
  3. Effect of Core Crystallization and Conformational Entropy on the Molecular Exchange Kinetics of Polymeric Micelles vol.4, pp.6, 2015, https://doi.org/10.1021/acsmacrolett.5b00197
  4. Determination of Carbon Chain Lengths of Fatty Acid Mixtures by Time Domain NMR pp.1613-7507, 2017, https://doi.org/10.1007/s00723-017-0953-2
  5. A Method for Estimating Transport Properties of Concentrated Electrolytes from Self-Diffusion Data vol.163, pp.14, 2016, https://doi.org/10.1149/2.0541614jes
  6. Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach vol.14, pp.17, 2018, https://doi.org/10.1039/C8SM00451J
  7. Fluid-solid phase transition of n-alkane mixtures: Coarse-grained molecular dynamics simulations and diffusion-ordered spectroscopy nuclear magnetic resonance vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37799-7
  8. MD Simulations of Diffusivities in Methanol-n-hexane Mixtures Near the Liquid-liquid Phase Splitting Region vol.29, pp.4, 2002, https://doi.org/10.1002/ceat.200500376
  9. Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials vol.64, pp.13, 2002, https://doi.org/10.1016/j.ces.2009.03.047
  10. Molecular Dynamics Study of the Melt Morphology of Polyethylene Chains with Different Branching Characteristics Adjacent to a Clay Surface vol.26, pp.6, 2010, https://doi.org/10.1021/la903425z
  11. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquidn-hexadecane under shear vol.134, pp.4, 2011, https://doi.org/10.1063/1.3541825
  12. Molecular Dynamics Simulations of Photo-Induced Free Radical Polymerization vol.60, pp.12, 2020, https://doi.org/10.1021/acs.jcim.0c01156