References
- Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980.
- Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261. https://doi.org/10.1007/BFb0050985
- Lodge, T. P.; Rotstein, N. A.; Prager, S. Adv. Chem. Phys. 1990, 9, 1.
- De Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, New York, 1979.
- Fleisher, G. Polym. Bull. (Berlin) 1983, 9, 152.
- Pearson, D. S.; Ver Strate, G.; von Meerwall, E.; Schilling, F. C. Macromolecules 1987, 20, 1133. https://doi.org/10.1021/ma00171a044
- Von Meerwall, E.; Beckman, S.; Jang, J.; Mattice, W. L. J. Chem. Phys. 1998, 108, 4299. https://doi.org/10.1063/1.475829
- Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N. Macromolecules 1998, 31, 7934. https://doi.org/10.1021/ma980698p
- Mondello, M.; Grest, G. S.; Webb, E. B.; Peczak, P. J. Chem. Phys. 1998, 109, 798. https://doi.org/10.1063/1.476619
- Park, H. S.; Chang, T.; Lee, S. H. J. Chem. Phys. 2000, 113, 5502. https://doi.org/10.1063/1.1289820
- Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A 1983, 28, 1016. https://doi.org/10.1103/PhysRevA.28.1016
- Simmons, A. D.; Cummings, P. T. Chem. Phys. Lett. 1986, 129, 92. https://doi.org/10.1016/0009-2614(86)80176-2
- Siepmann, J. I.; Karaborni, S.; Smit, B. Nature (London) 1993, 365, 330. https://doi.org/10.1038/365330a0
- Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995, 102, 2126. https://doi.org/10.1063/1.469563
- Mundy, C. J.; Siepmann, J. I.; Klein, M. L. J. Chem. Phys. 1995, 102, 3376. https://doi.org/10.1063/1.469211
- Cui, S. T.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 104, 255. https://doi.org/10.1063/1.470896
- Cui, S. T.; Gupta, S. A.; Cummings, P. T.; Cochran, H. D. J. Chem. Phys. 1996, 105, 1214.
- Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. J. Am. Chem. Soc. 1984, 106, 6638. https://doi.org/10.1021/ja00334a030
- Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equation; Englewood Cliffs, NJ; Prentice-Hall, 1971.
- Andersen, H. J. Comput. Phys. 1984, 52, 24. https://doi.org/10.1016/0021-9991(83)90014-1
- McQuarrie, D. A. Statistical Mechanics; Harper and Row: New York, 1976.
- Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156. https://doi.org/10.1063/1.470344
- Baschnagel, J.; Qin, K.; Paul, W.; Binder, K. Macromolecules 1992, 25, 3117. https://doi.org/10.1021/ma00038a015
- Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem. Phys. 1994, 100, 1684 https://doi.org/10.1063/1.466596
- Brown, D.; Clarke, J. H. R.; Okuda, M.; Yamazaki, T. J. Chem. Phys. 1996, 104, 2078. https://doi.org/10.1063/1.470964
- Paul, W.; Smith, G. D.; Yoon, D. Y. Macromolecules 1997, 30, 7772. https://doi.org/10.1021/ma971184d
- Boothroyd, A.; Rennie, A. R.; Boothroyd, C. B. Europhys. Lett. 1991, 15, 715. https://doi.org/10.1209/0295-5075/15/7/004
- Goldstein, Classical Mechanics; Addison-Wesley: Harvard University, 1974;, p 155.
- Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7156. https://doi.org/10.1063/1.470344
- Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 94, 5650 https://doi.org/10.1063/1.460475
- Padilla, P.; Toxvaerd, S. J. Chem. Phys. 1991, 95, 509. https://doi.org/10.1063/1.461451
- Nederbragt, G. W.; Boelhouwer, J. W. M. Physica 1947, 13, 305. https://doi.org/10.1016/0031-8914(47)90002-5
- Mondello, M.; Grest, G. S. J. Chem. Phys. 1995, 103, 7161.
- Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon: Oxford, 1986.
- Debye, P. Polar Molecules; Dover: New York, 1929.
- Berne, B.; Pecora, R. Dynamic Light Scattering; Wiley: New York, 1976.
- Cohen, M. H.; Tumbull, D. J. Chem. Phys. 1959, 31, 1164. https://doi.org/10.1063/1.1730566
- Ciccotti, G.: Ferrario, M.: Hynes, J. T.: Kapral, R. J. Chem. Phys. 1990, 93, 7137. https://doi.org/10.1063/1.459437
- Kubo, R. Rep. Prog. Phys. 1966, 29, 255. https://doi.org/10.1088/0034-4885/29/1/306
Cited by
- (0001) Surface vol.111, pp.4, 2007, https://doi.org/10.1021/jp065534m
- vol.36, pp.4, 2015, https://doi.org/10.1002/bkcs.10218
- Effect of Core Crystallization and Conformational Entropy on the Molecular Exchange Kinetics of Polymeric Micelles vol.4, pp.6, 2015, https://doi.org/10.1021/acsmacrolett.5b00197
- Determination of Carbon Chain Lengths of Fatty Acid Mixtures by Time Domain NMR pp.1613-7507, 2017, https://doi.org/10.1007/s00723-017-0953-2
- A Method for Estimating Transport Properties of Concentrated Electrolytes from Self-Diffusion Data vol.163, pp.14, 2016, https://doi.org/10.1149/2.0541614jes
- Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach vol.14, pp.17, 2018, https://doi.org/10.1039/C8SM00451J
- Fluid-solid phase transition of n-alkane mixtures: Coarse-grained molecular dynamics simulations and diffusion-ordered spectroscopy nuclear magnetic resonance vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37799-7
- MD Simulations of Diffusivities in Methanol-n-hexane Mixtures Near the Liquid-liquid Phase Splitting Region vol.29, pp.4, 2002, https://doi.org/10.1002/ceat.200500376
- Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials vol.64, pp.13, 2002, https://doi.org/10.1016/j.ces.2009.03.047
- Molecular Dynamics Study of the Melt Morphology of Polyethylene Chains with Different Branching Characteristics Adjacent to a Clay Surface vol.26, pp.6, 2010, https://doi.org/10.1021/la903425z
- Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquidn-hexadecane under shear vol.134, pp.4, 2011, https://doi.org/10.1063/1.3541825
- Molecular Dynamics Simulations of Photo-Induced Free Radical Polymerization vol.60, pp.12, 2020, https://doi.org/10.1021/acs.jcim.0c01156