DOI QR코드

DOI QR Code

The Investigation of Electro-Oxidation of Methanol on Pt-Ru Electrode Surfaces by in-situ Raman Spectroscopy

  • She, Chun-Xing (Department of Chemistry, Xiamen University) ;
  • Xiang, Juann (Department of Chemistry, Xiamen University) ;
  • Ren, Bin (Department of Chemistry, Xiamen University) ;
  • Zhong, Qi-Ling (College of Chemical and BiologicSsciences, Jiangxi Normal University) ;
  • Wang, Xiao-Cong (College of Chemical and BiologicSsciences, Jiangxi Normal University) ;
  • Tian, Zhong-Qun (State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University)
  • Published : 2002.11.01

Abstract

Assisted by the highly sensitive confocal microprobe Raman spectrometer and proper surface roughening procedure, the Raman investigation on the adsorption and reaction of methanol was performed on Pt-Ru electrodes with different coverages. A detailed description of the roughening process of the Pt electrodes and the underpotential deposition of the Ru was given. Reasonably good Raman signal reflecting the metal-carbon vibration and CO vibration was detected. The appearance of vibrations of the Ru oxides, together with the existence of Ru-C, Pt-C and CO bands, clearly demonstrates the participation of the bi-functional mechanism during the oxidation process of methanol on Pt-Ru electrodes. The Pt-Ru electrode was found to have a higher catalytic activity over Pt electrodes. This preliminary study shows that electrochemical Raman spectroscopy can be applied to the study of rough electrode surface.

Keywords

References

  1. J. Phys. Chem. v.99 E. Herrero;W. Chrzanowski;A. Wieckowski https://doi.org/10.1021/j100025a054
  2. J. Phys. Chem. v.99 W. Vielstich;X. H. Xia https://doi.org/10.1021/j100025a053
  3. J. Electroanal. Chem. v.257 R. Parsons;T. J. VanderNoot https://doi.org/10.1016/0022-0728(88)87028-1
  4. J. Electrochem. Soc. v.141 H. A. Gasteiger;N. M. Markovic;P. N. Ross, et al https://doi.org/10.1149/1.2055007
  5. J Phys Chem. v.97 H. A. Gasteiger;N. M. Markovic;P. N. Ross https://doi.org/10.1021/j100148a030
  6. Electrochim Acta v.39 H. A. Gasteiger;N. M. Markovic;P. N. Ross https://doi.org/10.1016/0013-4686(94)85171-9
  7. J. Electroanal. Chem. v.379 M. Krausa;W. Vielstich https://doi.org/10.1016/0022-0728(94)87152-3
  8. J. Electroanal. Chem. v.258 E. Ticanelli;J. G. Beery;M. T. Paffett, et al https://doi.org/10.1016/0022-0728(89)85162-9
  9. J. Am. Chem. Soc. v.119 C. E. Lee;P. B. Tiege;Y. Xing, et al https://doi.org/10.1021/ja963163p
  10. In Principles of Adsorption and Reaction of Solid Surfaces R. I. Masel
  11. J. Electroanal. Chem. v.60 M. Watanabe;S. Motoo https://doi.org/10.1016/S0022-0728(75)80261-0
  12. Catal. Today v.67 G. Chen;D. A. Delafuente;S. Sarangapani https://doi.org/10.1016/S0920-5861(01)00327-3
  13. J. Phys. Chem. v.101 Z. Q. Tian;B. Ren;B. W. Mao, et al
  14. Surf. Sci. v.406 W. B. Cai;B. Ren;F. M. Liu, et al https://doi.org/10.1016/S0039-6028(97)01030-3
  15. Appl. Phys. Lett. v.72 B. Ren;F. M. Liu;J. Xie, et al https://doi.org/10.1063/1.120877
  16. Ber. Buns. Phys. Chem. v.94 T. Iwasita;F. C. Nart;W. Vielstich https://doi.org/10.1002/bbpc.19900940930
  17. Surf. Sci. v.293 H. A. Gasteiger;P. N. Ross;E. J. Cairns https://doi.org/10.1016/0039-6028(93)90244-E
  18. Surf. Sci. v.335 F. Richarz;B. Wohlmann;U. Vogel;H. Hoffschulz;K. Wandelt https://doi.org/10.1016/0039-6028(95)00461-0
  19. Langmuir v.13 W. Chrzanowski;A. Wieckowski
  20. J. Electroanal. Chem. v.230 S. Szabo;I. Bakos https://doi.org/10.1016/0022-0728(87)80145-6
  21. J. Electroanal. Chem. v.127 B. Beden;F. Kairgan;C. Lamy, et al https://doi.org/10.1016/S0022-0728(81)80469-X
  22. J. Anal. Chem. v.358 S. Cramm;K. A. Friedrich;K. P. Geyzers, et al https://doi.org/10.1007/s002160050380
  23. Spectroscopy for Surface Science - Advances in Spectroscopy M. J. Weaver;S. Z. Zou;In Clark R J H;Hester R E (Eds.)
  24. J. Chem. Phys. v.99 no.1 J. Z. Xu;Jr. J. Yates https://doi.org/10.1063/1.465745

Cited by

  1. Electrooxidation Mechanism of Methanol at Pt-Ru Catalyst Modified GC Electrode in Electrolytes with Different pH Using Electrochemical and SERS Techniques vol.25, pp.11, 2007, https://doi.org/10.1002/cjoc.200790299
  2. In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium vol.10, pp.3, 2017, https://doi.org/10.3390/en10030290
  3. Spectroelectrochemical flow cell with temperature control for investigation of electrocatalytic systems with surface-enhanced Raman spectroscopy vol.140, 2009, https://doi.org/10.1039/B803366H
  4. ADSORPTION AND REACTION AT ELECTROCHEMICAL INTERFACES AS PROBED BY SURFACE-ENHANCED RAMAN SPECTROSCOPY vol.55, pp.1, 2004, https://doi.org/10.1146/annurev.physchem.54.011002.103833
  5. In Situ Surface-Enhanced Raman Spectroscopic Studies of CO Adsorption and Methanol Oxidation on Ru-Modified Pt Surfaces vol.111, pp.51, 2007, https://doi.org/10.1021/jp075929l