LMI 기법을 이용한 2자유도 표준모델에 대한 비결합 제어기의 $H_2$ 설계

[ $H_2$ ]Design for Decoupling Controllers Based on the Two-Degree-of-Freedom Standard Model Using LMI Methods

  • 이종성 (성균관대학교 전기.전자 및 컴퓨터공학부) ;
  • 강기원 ((주) 마이다스코리아) ;
  • 박기헌 (성균관대학교 전기.전자 및 컴퓨터공학부)
  • Lee, Jong-Sung (School of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kang, Ki-Won (Midaskorea Co., Ltd.) ;
  • Park, Ki-Heon (School of Electrical and Computer Engineering, Sungkyunkwan University)
  • 발행 : 2001.02.28

초록

본 논문에서는 다변수 시스템을 제어하는 경우 효율적인 제어를 어렵게 만드는 입력과 출력 사이의 결합 효과를 제거하는 비결합 제어기를 설계하였다. 설계된 제어기는 비결합 조건뿐만 아니라 제어계의 성능을 동시에 고려할 수 있는 2자유도 구조를 가지고 있다. 또한 제어기의 계산을 용이하게 하기 위하여 플랜트를 표준모델로 확장시킨 후 전달 행렬을 상태공간 계수로 표현하였다. 그리고 제어기의 계수값들은 선형 행렬 부등식을 이용하여 블록꼴 최적화 문제로 설정하여 구했기 때문에 비결합 및 성능 최적화에 초점을 둔 비결합 제어기의 $H_2$ 설계를 하는데 있어 효과적인 방법을 제시하였다.

This paper presents an LMI(Lincar Matrix Inequalities) method for designing the optimal decoupling controller. The proposed controller based on the Two Degree-of-Freedom configuration considers both the performance of controller and decoupling properties. A minimal set of assumptions for existence of the decoupling controller formula is described in the state space formulas. The decoupling controller parameters are obtained from LMI methods for computational efficiency.

키워드

참고문헌

  1. D. C. Youla, II. Jabr, and J. J. Bongiorno, Jr., 'Modern Wiener-Hopf design of optimal controllers-part II ; The Multivariable Case,' IEEE Trans. on Automatic Control, Vol. AC 21, No. 3, pp. 319 338, June, 1976
  2. D. C. Youla and J. J. Bongiorno, Jr., 'A feedback theory of two-degree-of-freedom optimal Wiener-Hopf Design,' lEEE Trans. on Automatic Control, Vol. AC-30, No. 7, pp. 652- 665, July, 1985
  3. J. C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, 'State space solutions to standard $H_2$ and $H_{\infty}$ control problems,' IEEE Trans. on Automatic Control, Vol. 34, pp. 831-847, 1989 https://doi.org/10.1109/9.29425
  4. K. Park and J. J. Bongiorno, Jr., 'A General theory for the Wiener-Hopf design of multi variable control systems,' IEEE Trans. on Automatic Control, Vol.34, pp.619-626, 1989 https://doi.org/10.1109/9.24230
  5. A. Ailon, 'Decoupling of square singular systems via proportional state feedback,' IEEE Trans. on Automatic Control, Vol. 36, No. 1, pp.95-102, Jan., 1991 https://doi.org/10.1109/9.62273
  6. P. N. Paraskevopulos and F. N. Koumboulis, 'The decoupling of generalized state-space systems via state feedback,' IEEE Trans. on Automatic Control, Vol. 37, No. 1, pp. 148-152, Jan., 1992 https://doi.org/10.1109/9.109653
  7. A. I. G. Vardulakis, 'Internal stabilization and decoupling in linear multivariable systems by unity output feedback compensation,' IEEE Trans. on Automatic Control, Vol. AC 32, No. 8, pp.735-739, Aug., 1987
  8. M. G. Safanov and B. S. Chen, 'Multivariable stability margin optimization with decoupling and output regulation,' in Proc. Conf. Decision Contr., pp,616-622, Orlando, FL, Dec. 1982, and lEE Proc., Vol. 129, pp. 276-282, Nov., 1982 https://doi.org/10.1109/CDC.1982.268216
  9. C. A. Desocr and A. N. Gundes, 'Decoupling linear multiinput-multioutput plants by dynamic output feedback : An algebraic theory,' IEEE Trans. on Automatic Control, Vol.31, No.8, pp. 744-750, 1986
  10. H. P. Lee and J. J. Bongiorno, Jr., 'Wiener-Hopf design of optimal decoupled multivariable feedback control systems,' IEEE Trans. on Automatic Control, Vol. 38, No. 12, pp. 1838-1843, Dec., 1993 https://doi.org/10.1109/9.250562
  11. H. P. Lee and J. J. Bongiorno, Jr., 'Wiener-Hopf design of optimal decoupling controllers for plant with non-square transfer matrices,' Interantional J. of Control, Vol. 58, No.6, pp.1227-1246, 1993 https://doi.org/10.1080/00207179308923052
  12. S. Boyd, L. E. Ghoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics, SIAM, Philadelphia, PA, Vol. 15, 1994
  13. K. Park and D.C. Youla, 'Numerical calculation of the optimal three degree-of-freedom Wiener - Hopf controller,' International Journal of Control, Vol. 56, No. 1, pp. 227 244, July, 1992 https://doi.org/10.1080/00207179208934311
  14. 박기헌, '비결합 제어 시스템의 위너-호프 설계와 상태공간 계산 공식,' Report SKK-CAL-99-02
  15. J. W. Brewer, 'Kronecker products and matrix calculus in system theory,' IEEE Trans. on Circuits and Systems, Vol. CAS-25, No.9, Sep., 1978
  16. C. Scherer, P. Gahinet and M. Chilali, 'Multiobjective output-feedback control via LMI optimization,' IEEE Trans. on Automatic Control, Vol. 42, No. 7, Jul., 1997 https://doi.org/10.1109/9.599969
  17. H.P. Lee, 'Wiener-Hopf design of decoupled multivariable feedback control systems,' Ph. D. dissertation, Polytechnic University, Farmingdale, New York, 1992