References
- S. C. Mullick, H. B. Wheller and G. F. Songster, Diagnosis of deep vein thrombosis by measurement of electrical impedance , Am. J. Surg., vol. 119, pp. 417-422, 1970 https://doi.org/10.1016/0002-9610(70)90143-1
- F. A. Anderson Jr., W. W. Durgin and H. Brownell Wheeler, 'Interpolation venous occlusion plethysmography using a non-linear model, Med. Biol. Comput, vol. 24, pp. 379-385, 1986 https://doi.org/10.1007/BF02442692
- P. E. Ward, F. B. Bradley, J. G. Brown, W. G. Kernohan, R. C. McGivern and R. A. B. Mollan, 'impedance plethysmo-graphy, Clin. Orthop., vol. 248, pp. 195-199, 1989
- A. D. Seagar, J. M. Gibbs and F. M. Davis, 'Interpreta-tion of venous occlusion plethysmographic measurements using simple model, Med. Biol. Eng. Comput, vol. 22, pp. 12-18, 1984 https://doi.org/10.1007/BF02443739
- I. C. Turner et al., 'Numerical model of deep venous thrombosis detection using venous occlusion strain gauge plethysmography', Med. Biol. Eng. Comput, Vol. 38, pp. 348-355, 2000 https://doi.org/10.1007/BF02347057
- Sverre Grimnes, 'Bioimpedance and Bioelectricity Basics', ACADEMIC PRESS, 2000.
- 이전, 박광리, 이경중, '제세동 쇼크에 의한 심장 전류밀도 분포에 관한 시뮬레이션 연구', 대한의용생체공학회, 제21권, 제4호, pp.403-409, 2000
- Shen Lou, et al. 'The Electrode System in Impedance-Based Ventilation Measurement', IEEE Transactions on Biomedical Engineering, vol. 39, no. 11, pp. 1130-1141, 1992 https://doi.org/10.1109/10.168692
- K. B. Chandran, Cardiovascular biomechanics, New York University Press, 1992.
- V. C. Rideout, 'Cardiovascular system simulation in biomedical engineering education', IEEE Trans. Biomed. Eng., Vol. 21, pp. 101-107, March 1972
- Ruth Nicholson Klepfer, Christopher R. Johnson, and Robert S. Macleod, 'The Effects of Inhomogeneities and Anisotropies on Electrocardiographic Fields:A 3-D Finite-Element Study', IEEE Transactions on Biomedical Engineering, vol. 44, no. 8, pp. 706-719, 1997 https://doi.org/10.1109/10.605427
- A. L. De Jongh, E. G. Entcheva, J. A. Replogle, R. S. Booker, B. H. Kennight, and F. J. Claydon, 'Defibrillation Efficacy of Different Electrode Placements in a Human Thorax Model', PACE, vol. 22, pp. 152-157, 1999 https://doi.org/10.1111/j.1540-8159.1999.tb00323.x
- C. R. Johnson, R. S. MacLeod, and P. R. Ershler,' 'A computer model for the study of electrical current flow in the human thorax', Comput. Biol. Med. vol. 22, pp. 305-323, 1992 https://doi.org/10.1016/0010-4825(92)90020-N
- N. Khambete, P. Metherall, et al., 'Can We Optimize Electrode Placement for Impedance Pneumography?', Annals of New York Academy of Sciences, vol. 873, pp.534-542, 1999 https://doi.org/10.1111/j.1749-6632.1999.tb09502.x
- D. Panescu, J. G. Webster and W. J. Tomkins, 'Optimization of Cardiac Defibrillation by Three-Dimensional Finite Element Modeling of the Human Thorax', IEEE Transactions on Biomedical Engineering, vol. 42, no. 2, pp. 185-191, 1995 https://doi.org/10.1109/10.341831
- D. W. Hill and H. J. Lowe, 'The use of the electrical-impedance technique for the monitoring of cardiac output and limb bloodflow during anaesthesia', Medical and Biological Engineering, vol. 11, no. 5, pp. 534-545, September 1973 https://doi.org/10.1007/BF02477397