Г-DEVIATION AND LOCALIZATION

  • Albu, Toma (Bucharest University, Department of Mathematics, Romania) ;
  • Teply, Mark L. (University of Wisconsin-Milwaukee, Department of Mathematical Sciences, EMS Building)
  • Published : 2001.09.01

Abstract

This paper is a natural continuation of [2], [3], [4] and [5]. Localization techniques for modular lattices are developed. These techniques are applied to study liftings of linear order types from quotient lattices and to find Г-dense sets in certain lattices without Г-deviation in the sense of [4], where Г is a set of indecomposable linear order types.

Keywords

References

  1. Relative Finiteness in Module Theory T.Albu;C.Nastasescu
  2. Math.Proc.Cmbridge Philos.Soc. v.120 Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem(I) T.Albu;P.F.Smith
  3. Comm.Algebra v.25 Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem(II)
  4. Discrete Math. v.214 Generalized deviation of posets and modular lattices T.Albu;M.L.Teply
  5. "Algebra and its Application" v.259 The double infinite chain condition and generalized deviations of posets and modules D.V.Huynh;S.K.Jain;S.R.Lopez-Permouth(ed.)
  6. Algebraic Theory of Lattices P.Crawley;R.P.Dilworth
  7. Bull.Soc.Math. v.90 Des categories abeliennes P.Gabriel
  8. Proc.London Math.Soc. v.76 Generic modules over Artin algebras H.Krause
  9. J.Pure Appl.Algebra v.60 The deviation, density, and depth of partially ordered sets W.G.Lau;M.L.Teply;A.K.Boyle
  10. Bull.Sci.Math. v.96 Deviation des ensembles et groups abeliens totalement ordonnes B.Lemonnier
  11. Nonocommutative Noetherian Rings J.C.McConnell;J.C.Robson
  12. Discrete Math. v.53 Dimension de Krull des ensembles ordonnes M.Pouzet et N.Zaguia
  13. Model Theory and Modules M.Prest
  14. Comm.Algebra v.21 On {ω*, ω}-deviation of a module F.F.Raggi C.;C.J.E.Signoret P.
  15. Linear Orderings J.G.Rosenstein
  16. Rings of Quotients B.Stenstrom