HIGH DIMENSION PRUFER DOMAINS OF INTEGER-VALUED POLYNOMIALS

  • Cahen, Paul-Jean (Department of Mathematics, Universite d’Aix-Marseille III, CNRS UMR 6632, France) ;
  • Chabert, Jean-Luc (Department of Mathematics, CNRS FRE 2270, Universite de Picardie 80039 Amiens, France) ;
  • K.Alan Loper (Department of Mathematics, Ohio State University, Newark, USA)
  • Published : 2001.09.01

Abstract

Let V be any valuation domain and let E be a subset of the quotient field K of V. We study the ring of integer-valued polynomials on E, that is, Int(E, V)={f$\in$K[X]|f(E)⊆V}. We show that, if E is precompact, then Int(E, V) has many properties similar to those of the classical ring Int(Z).In particular, Int(E, V) is dense in the ring of continuous functions C(E, V); each finitely generated ideal of Int(E, V) may be generated by two elements; and finally, Int(E, V) is a Prufer domain.

Keywords

References

  1. Acta Arith. v.91 Continuous functions on compact subsets of local fields M.Bhargava;K.S.Kedlaya
  2. English transl. General Topology N.Bourbaki
  3. English transl. Commutative Algebra
  4. Amer.Math.Soc.Surveys and Monographs v.48 Integer-Valued Polynomials P.-J.Cahen;J.-L.Chabert
  5. Lecture Notes in Pure and Appl.Math. v.205 Skolem Properties and Integer-Valued Polynomials: a Survey in Advances in Commutative Ring Theory
  6. J.Theor.Nombres Bordeaux(to appear) On the p-adic Stone-Weierstrass theorem and Malher's expansion
  7. Non Noaherian Commutative Ring Theory What's new about Integer-Valued Polynomials on a Subset?
  8. J.Algebra v.225 Interpolation Domains P.-J.Cahen;J.-L.Chabert;S.Frisch
  9. J.Pure Appl.Algebra v.135 Skolem properties, value functions, and divisorial ideals P.-J.Cahen;J.-L.Chabert;Evan Houston;Thomas G.Lucas
  10. Bull.Sci.Math. v.68 Sur les fonctions continues p-adiques J.Dieudonne
  11. J.Algebra v.41 Prestable ideals P.Eakin;A.Sathaye
  12. Prufer Domains M.Fontana;J.A.Huckaba;I.J.Papick
  13. pacific J.Math. v.3 On the prime ideals of the ring of entire functions M.Henriksen
  14. Proc.Amer.Math.Soc. v.1 The Weierstrass theorem in fields with valuations I.Eaplansky
  15. Proc.Roy.Irish.Acad.Sect. v.A85 Rings of integer-valued polynomials determined by finite sets D.L.McQuillan
  16. J.Reine Angew.Math. v.199 no.23-34;208 An Interpolation Series for Continuous Functions of a p-adic Variable K.Mahler
  17. J.Number Theory v.75 Continuous Functions on discrete Valuations Rings