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I-DEVIATION AND LOCALIZATION
ToMA ALBU AND MARK L. TEPLY

ABSTRACT. This paper is a natural continuation of [2], [3], [4] and
[5]. Localization techniques for modular lattices are developed.
These techniques are applied to study liftings of linear order types
from quotient lattices and to find T—dense sets in certain lattices
without I'~deviation in the sense of [4], where I' is a set of indecom-
posable linear order types.

Introduction

In the classical theory of commutative rings, the theories of localiza-
tion and Krull dimension play important roles. For modules over a com-
mutative ring, localizations can be obtained by using tensor products.
These types of localization were generalized to an Abelian category set-
ting by Gabriel [7] and others. This more general localization was used
to study torsion theories and general Krull dimension for modules {e.g.,
see [1], [5], [16]}). The idea of Krull dimension was extended to partially
ordered sets and studied by many authors (e.g., [9], [10], [11], [12]), often
under the name of deviation or I'-deviation. In our recent papers [4],
(6] we investigated the general properties of the I'~deviation of posets
and modular lattices, and in other recent papers, Albu and Smith [2],[3]
studied the localization of modular lattices in conjunction with Krull
dimension.

In the present paper, we combine ideas from [2], [3], [4], and [5] to
obtain a theory of localization for I'-deviation by using quotient lattices.
In Section 1, we present some properties of our localization of lattices
and compare it to the localizations of [8] and [13]. In Section 2, we
develop the concept of I'~deviation by studying the interaction of chains
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and congruence relations. For a lattice L, we determine some situations
in which it is possible to lift a chain of linear order type <y in a quotient
of L to a chain of type v in L. Finally, in Section 3, we apply some
of the ideas of the previous sections to obtain new results about the
existence of ['-dense sets in lattices without I'-deviation; these results
provide partial answers to questions raised in [4] and [9].

0. Terminology and notation

We will follow the notation and terminology used in [2], [3], [4]. Thus,
M (resp. C) will denote the class of all modular lattices with 0 and 1
(resp. complete modular lattices).

Throughout this paper a lattice will mean a member of M, and
(L, <, A,V,0,1), or more simply, just L, will always denote such a lat-
tice. The opposite lattice of L will be denoted by L* . If z, y are elements
in L with z <y, then y/z will denote the interval [z,y];ie.,

y/lr={aeLl|jz<a<y}

For all undefined notation and terminology on lattices, the reader is
referred to [4], [6], [15], and/or [16]. In particular, we draw freely on our
earlier paper [4].

1. Krull dimension via quotient lattices

The aim of this section is to present several definitions of the Krull
dimension of a modular lattice via quotient lattices and to reveal the
relationships between them.

Throughout this section we shall use freely some notation, terminol-
ogy, and facts from [2] and [3]. So, as in [2], by an abstract class of
lattices we mean a nonempty subclass X of the class M of all mod-
ular lattices with 0 and 1, that is closed under isomorphisms (i.e., if
PQeM,P~Q and P X, then Q € X').

If L € M, then a nonempty subclass X of M is called a Serre class
for L if X is an abstract class of lattices, and for all a < b < ¢ in L,
c/a € X if and only if b/a € X and ¢/b € &'. A Serre class of lattices
is an abstract class of lattices that is a Serre class for all lattices L € M.

If L € C, we say that X is a localizing class for L if X is a Serre
class for L, and for any z € L and for any family (z;)ie; of elements
of 1/z such that z;/z € X forall i € I, we have (V;o; z:)/z € X.
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By a localizing class of lattices we mean a Serre class of lattices that is
a localizing class for all L € C.

Let & be an arbitrary nonempty subclass of M and let L ¢ M. As
in [2] we define a relation ~y on L by:

ar~yb < (aVvb)/land) e X.
Note that if @ < b in L, then
a~xb < blacX.

It was proved in [2, Proposition 2.4] that if X is an abstract class of
lattices, then ~y is congruence on L if and only if X is a Serre class
for L, and in this case, the lattice L/~y is called the guotient lattice
(or factor lattice) of L by (or modulo) the Serre class X.

As in [2], one defines for & and L a certain subset Saty(L) of L as
follows:

Saty(L)y={zcLllz<yel,y/zeX = z=y},

which is called the X—saturation of L or the X—closure of L. This is the
precise analogue of the lattice Sat (M) ={N < Mp|M/N € F} of
all 7—closed submodules of a given right R—module M, where r = (T, F)
is a hereditary torsion theory on the category Mod-R of all unital right
R-modules over an associative ring R with nonzero identity.

Of particular interest are those lattices L € M and classes X such
that Saty (L) has a natural structure of a modular lattice. This is, by [2,
Proposition 3.6], the case when X is a Serre class for L and additionally
L possesses an X'—closure operator; i.e., a map

L — Satx(L), 2+—7T

such that
(1) <7 and T/ze X forallze L.
2)z<yin L = T<¥y.

It is known that if v = (7,F) is a hereditary torsion theory on
the category Mod-R and Mg is a right F-module, then the lattice
Sat{M) of all 7—closed submodules of M is isomorphic to the lattice
L(T(M)) of all subobjects of the object T(M) in the quotient category
Mod-R/T , where T : Mod-R —+ Mod-R/T is the canonical functor
(see (1, Proposition 7.10]). The result below is precisely the latticial
analogue of this fact.
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LeMMaA 1.1, ([2, Lemma 3.7]) Let X be a Serre class for a modular
lattice L such that L has an X'-closure operator. Then

L/~ x ~ Saty(L).

Recall that if X is an arbitrary nonempty subclass of M, a lattice L
is called X'-Noetherian (resp. X—Artinian) if for every ascending chain
71 < 29 < ... (resp. descending chain z; > z3 > ...) of elements
in L there exists a positive integer s such that =z;41/z; € X (resp.
331'/:171'4_1 € ;JL’) forall i>s.

The next result is an extension of the equivalence (1} < (3) in [2,
Proposition 4.2},

LEMMA 1.2. Let X be a Serre class for a modular lattice L. Then
the following statements are equivalent:

(1} L is X—Artinian (resp. X—Noetherian).

(2) The quotient lattice L/~ is Artinian (resp. Noetherian).

Proof. We shall discuss only the X—Artinian case. For any z € L we
denote by Z the congruence class of x.

(1) = (2). Let 77 > Z3 > Z3 > - - be a descending chain in L/~y,
with x; € L for all ¢ > 1. We construct a descending chain y; > y2 >
y3 > --- in L such that y; € %; for all ¢ > 1 as follows: Set y; = x1.
Inductively assume that we have constructed y; > y2 > -+ > yn, with
yr € zx for all 1 <k <n. Now

T > Tngl = Inil = T A Tntl = Un A Tnil = Yn A Zntl
= Yn N Tp41 € E;?:I:-l-!

since the canonical map L — L/~ x is a lattice morphism. Set
Yntl = Yn A Tpy1. Then yn > ynpt1. Since L is A-Artinian by (1),
there exists m such that y,,/ym+1 € &, and hence ym ~x Ym+1. But
this contradicts the fact that 3, and #,,41 are in different congruence
classes %, and ZTp,41.

(2) = (1): Assume that the lattice L/~y is Artinian, and let
1> T > ...

be a descending chain in L. Then, we obtain the descending chain

TI2T2 >
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in L/~ y.8Since L/~ x is Artinian, there exists a positive integer s
such that %, = T, 1; 1€, Tn/Tny1 € X for all » > s. This shows that
L is X—Artinian. O

Now recall from [3] some notations and facts on Krull dimension and
dual Krull dimension:
K = {L € M| L has Krull dimension },
K = { L € M| L has dual Krull dimension },
Ko ={LeK|k(L)<a}l,
KS = {LekK k(L) <al,
where a > 0 is an arbitrary ordinal and k(L) (resp. k°(L)) denotes
the Krull dimension (resp. dual Krull dimension) of the lattice L.
It is well known that K, Ko, KU are all Serre classes of lattices.
Moreover, K = K" according to a well known result due to Lemonnier
[10].

For any ordinal o > 0 we shall briefly denote ~x_, by ~,, and
~ K by ~go. 8o, if a,b € L, then

a~ob = k({lavb)/(aAb) < a,

a~pob = E{avb)/{a b)) <o

Since K4 and K9 are Serre classes of lattices, we have that both ~
and ~go are congruences on any lattice L € M. In particular, L/~
and L/~,0 are modular lattices, which will be denoted throughout this
paper by L, and Lo respectively.

Remark that if X is a Serre class of lattices for a lattice L, then

LeX = L/~y=1,

where 1 denotes the trivial lattice, i.e., the lattice having only one ele-
ment.

The first half of the next result is a particular case of [3, Proposition
3.3

LEMMA 1.3. Let L e M and let « > 0 be an ordinal. Then,
k(Ly=a < L¢ZK, and L is K, — Artinian.
K(L)=a < L¢K? and L is K° — Noetherian.

Now using Lemma 1.2, Lemma 1.3, and the remark made just before
Lemma 1.3, we deduce at once:
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ProprosITION 1.4. Let L € M and let o« > 0 be an ordinal. Then,
k(L) =a < k(L,) =0
<= « Is the least ordinal such that L, =1,

and
KLY = a <= k(L) =0
<= a is the least ordinal such that L4 = 1.

Our next aim is to compare the definition of Krull dimension of a
modular lattice with the dimensions discussed in [8], [13], and [14].

As in [13, Section 10.2], for any lattice L and for any ordinal a > 0
we shall define inductively a congruence =% on L and the corresponding
quotient lattice L* of L as follows:

V=L, 2l xl=n) =L/ =b

?

Thus,
z =y <= (zVy)/(zAy)is Artinian.

Let @ > 2 be an ordinal and suppose that we have defined the
quotient lattices LY of L for any ordinal v < o and the congruences
~" on L such that LY ~ L/~" canonically. If « is a nonlimit ordinal,
say @ = B+ 1, then define L® = LA+ .= (Lﬁ)l, and denote by ~=® the
congruence on L such that L* ~ L/~% .

In case « is a limit ordinal, then define

= U ~7, and L[® = L/~".
B<a

We say that the lattice L has Krull*-dimension if there exists an
ordinal v with L' = 1; in this case, define k*(L) as being the
least ordinal a such that L+l = 1. It was asserted in [13, p.217] that
“modulo quibbles at limit ordinals”, k*(L) coincides with the usual Krull
dimension k(L) of L. This is in fact so, because of the next result.

ProprOSITION 1.5. For any lattice L € M and any ordinal o > ( the
congruences =% and ~, on L coincide.

Proof. This can be proved by transfinite induction. The cases o =
0, 1, or a limit ordinal are immediate from the definitions.

For the nonlimit ordinal case, assume the result is true for a. Now
T ~q41 ¥ if and only if any descending chain between z Vy and z Ay
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has only finitely many factors with Krull dimension « «. This happens
exactly when any descending chain

TVY2212222... 28312802 ...22NY

has z; ~, x;41 for all but finitely many 4. But by the induction hy-
pothesis, x; ~q ;41 if and only if z; & z;41, and the latter condition
holding for all but finitely many ¢ in any chain means z ~°t1 y. ]

For a lattice L, the dimensions k(L) and k%(L) are special cases of a
more general concept of I'—deviation, which can be found in [4], [5], or
(12]. In particular, k(L) and k°(L) are obtained by using I' = {&*} and
I' = {w}, respectively, ([4, Proposition 3.10]) in the following definition.

DEFINITION 1.6. Let (P, <) be an arbitrary poset and I' an arbitrary
nonempty set of linear order types. The I'-deviation of (P, <), also called
I'—Krull dimension of (P, <) and denoted in the sequel by kr(P), is an
ordinal number defined recursively as follows: kr(P) = —1, where —1
is assumed to be the predecessor of zero, if and only if P is a trivial poset
(or antichain), that is if it has no two distinct comparable elements.

kr(P) = 0 if and only if kp(P) # —1 and P contains no chain of
order type v for any y €.

Let a > 0 be an ordinal number and assume that we have already
defined which posets have I'-deviation 8 for any ordinal 8 < «. Then
we say that kp(P) = « if kp(P) has not been previously defined, and
if, for any v € I' and any chain C of P of type v, there exists a < b in
C such that b/a, considered as an interval in P, has kp(b/a) = 3 for
some G < a.

In case T' = {7}, then instead of ki, (P), we shall simply write
ky(P), and call it y—deviation.

In [8} H. Krause implicitly defines a Krull dimension h{L) for a lattice
L in a manner similar to Prest [13]: for any ordinal a > 0 one defines in-
ductively a congruence =* on L and the corresponding quotient lattice
H, of L as follows:

H =L, =_y:==, =q=r~q, Hy:=L/>g.
Thus,
r =gy <= (zVy)/(xAy)is Artinian.
Let @ > 1 be an ordinal and suppose that we have defined the

lattices H., for any ordinal v < e« and the congruences =, on L such
that H, ~ L/=, canonically. If o is a nonlimit ordinal, say o = 8+1,
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then define H, = Hg; := (Hg)o, and denote by =, the congruence
on L such that H, ~ L/=, .
In case « is a limnit ordinal, then define

= U =g and H,:=L/=,.
A<

We say that the lattice L has h—dimension if there exists an ordinal
v with Hy = 1; in this case, define h{L) as being the least ordinal
such that H, = 1. If the lattice L does not have h—-dimension, we write
h(L) = o0.

As one can see, Krause'’s definition varies slightly from the usual one.
These differences are due to the starting points L = L% or L = H_; and
the choice of & + 1 or « in determining the dimensions k(L) and A(L),
respectively.

For example, let L be a chain of order type (w®+1)*. For any positive
integer m > 1 the congruence =" identifies z,y € L with =z < y
whenever k(y/z) <n—1. Hence =“ = |}, ., =" identifies z,y € L with
r < y whenever k(y/z) < w. Thus L/~* # 1; however, L/~“t1=1.
By the definition of k(L), we have k(L) = w, but by the definition of
h(L), we have h(L) =w + 1.

Indeed, by [8, Lemma 1.1 (3)], A(L) can never be a limit ordinal.
This is true because a limit ordinal can never be the least ordinal v such
that 0=, 1. Since h(L) and k(L) are always defined basically from the
same congruence relation =7, this forces the dimensions to vary by 1
for lattices L with k(L) > w.

Explicitly, we have the following formulas:
h(L) = k(L) for k(L) < w,
h(L)=k(L) 4+ 1 for k(L) > w,
h(L) = oo when k(L) does not exist.

The real thrust of the work of Krause (8] is in the representation
theory of algebras, where modules of finite length play a very important
role. We define a dimension, which we denote by f(L) (“f” for finite) for
alattice L: f(L) = kp(L), where I' = {w,w"}. In particular, f(L) = -1
in case L = 1; f(L) = 0 if L # 1 and L has finite length (i.e., L is both
Noetherian and Artinian.) Higher dimensions are defined inductively
as in Definition 1.6 to measure how close the lattice is to being of finite
length. We note that our definition is analogous to one given for modules
in [14].
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In {8], Krause introduces a dimension similar to f{L); it is denoted
by dimg(L), where £ denotes the class of all finite length lattices. The
definition of dimg(L) is based on the same principal as h(L), which
uses the Artinian lattices instead of the finite length lattices. So, by
reasoning similar to the Krull dimension case, we have

dimg{L) = f(L) for f(L) < w,
dimg(L) = f(L)+ 1for f(L) > w,
dimg (L) = oo when f(L) does not exist.

An easy transfinite induction shows that f(L) is precisely the 2-
dimension dima(L) (“2” for two—point lattice) or the m—dimension m—
dim(L) (“m” for minimal congruence} of L considered in [13].

2. Localization of I'-deviation

The aim of this section is to deal with the localization of I'-deviation
for two important cases. To do this, we determine when chains can be
lifted; i.e., if L is a modular lattice and ~ is a congruence relation on
L, when can a chain of order type v in L/~ be lifted to a chain of
type -y in L? Throughout this section we shall use freely some notation,
terminology, and facts from [2], [3], and [4].

PROPOSITION 2.1. Let ~ be a congruence relation on a lattice L €
M. Assume that each congruence class of ~ has a unique maximal
(minimal) element. Then for each chain C' in L' = L/~ there exists a
chain C in L such that C = (' and each member of C is in a distinct
congruence class of ~ .

Proof. Let C' = {c,} be a chain in L. Let ¢, be the unique maximal
(minimal) element of ¢,. Then C = {c,} is a chain in L with C = ¢’
and cq € ¢, |

Recall from [4] that if X be a nonempty class of posets and I' is a
nonempty set of linear order types, then a poset P is said to be X — T
if, for any chain C of P of order type v with v €T, there exists a < b
in C such that b/a, considered as an interval in P, belongs to X.

PROPOSITION 2.2. Let X' be a Serre class of lattices for a lattice L €
M such that L has an X-closure operator L. — Sat x(L), z+— T,
and let T be a nonempty class of linear order types. Then the following
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statements are equivalent.
(1) The lattice L is X —T'.
(2) kr(Satx(L)} <0.
(3) kr(L/f~x} <0.

Proof. For simplicity, let L' = Saty(L). Clearly (2) <= (3) by
Lemma 1.1.

(1) = (2): Assume that L’ contains a chain " of order type 7 for
a certain ¥ € I'. Then there exist z’ < ¢ in C’ such that y'/z’ € X.
Since x’ € L/, it follows that ¥’ = z’, which is a contradiction. Thus
kr(Saty(L)) <0.

(2} == (1): Assume that kr(Saty(L)) < 0. We are going to show
that L is X —T". To do so, let C be a chain of L of order type v for some
v € I, and consider the set

O = {zjzeC}.

Then clearly C’ is a chain in L'.
Observe that the map

C—C', c—¢

cannot be injective, for otherwise L’ would contain a chain of order type
7, which contradicts the fact that kr(Satxy(L}) < 0. Hence there exist
x # y in C such that T = 7. Since C is a chain, we may assume that
x < y. We have

y/x CH/z=%/x € X.
This proves that L is X —T. O

If all the order types in I' are countable, then we can avoid the as-
sumption that I has an A'—closure operator. To see this, we need the
following lemma.

LEMMA 2.3. Let ~ be a congruence on a lattice L, let L' = L/~ be
the quotient lattice and let p: L — L' be the canonical surjection. If
C' is a countable chain in L', then there exists a chain C in L such that
C =" viap.

Proof. We notice first that for every a € L the set
L, = {z € L |z comparable to a }

is a sublattice of L. Since C’ is countable, let us consider a bijective
map IN — ', i— C'(i). We will construct inductively pairs (1}, Cy)
with T, sublattice in L, C,, a chain in T, and such that
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(i) p(1y,) 2 C,

(11) p restrlcted to Cp, is an injective map,

(i) p(Cn) = {C'(H)|0<i<n},

(iv) z and y are comparable for every z € T,, and for every y € C,,.

For n = 0, let yo € C’(0). Thus, for Ty = L, and Cy = {yo}, the
pair (Ip, Cp) clearly verifies (ii), (iil) and (iv). In order to verify (i), we
notice that, for z € C'(¢), since C’ is a chain, there are just two cases:

a) if C'(1) < plyg), then for 2’ = x A yg, since Tp is sublattice, we
have ' € Ty and p(z') = p{z) A p(yo) = C'(3);

b) if C'(3) > p(yo), then for ' = 2 V yq, since Ty is sublattice, we
have ' € Ty and p(z'} = p(z) V p(yo) = C'(3).

In both cases there exists 2’ € T such that p(2’) = C'(¢). Therefore
(i} holds for Tp.

Assume now that we have constructed (T,,C,) with properties (i},
(i), (ili) and (iv). From (i) there exists y,41 € T, N C'(n + 1). Set
Toy1 = T, N Ly, ,; it is clear that T,.; is a sublattice of L. Using
(iv), we have C, C Ly, ., and so C, € Thq1. Set Cpqr = Cp U {yna1}-
By definition, (Th+41,Cnya) verifies (ii), (iii) and (iv) Since Tp41 is a
sublattice, using (i) for T}, in the same argument as in the case n = 0,
we obtain that (T, 41, Cnq1) also verifies (i).

We have constructed inductively the desired family of pairs. We
notice that C, C C 41 for every n € IN; hence C = UnE v Cn is a chain
in L. Set f:C —— C’ by f{y) = p(y). Since (ii) and (iii) hold for every
C,,, we deduce that f is a bijective map. Since p is increasing, f is also
increasing. Since C' and C’ are chains, f is a chain isomorphism. O

ProprosiTION 2.4. Let A be a Serre class of lattices for a lattice
L € M, and let I' be a nonempty set of countable linear order types.
Then the following statements are equivalent.

(1) The lattice L is X —T.

(2) kp(satx(L)) < 0.

(3) kr(L/~x) <0.

Proof. (1) = (3). Assume that there exists a chain C' of L/~x of
order type - for a certain v € I'. By Lemma 2.3, there also exists a chain
C of L of order type v, and each element of C is in a different congruence
class of ~y. By (1) there exist z < y in C such that y/z € X. Hence
=% in L/~x, which is a contradiction. Thus k(L/~x) < 0.

The other implications follow as in the proof of Proposition 2.2. O
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Denote by Kr the class of all modular lattices having ['-deviation.
For each ordinal & > 0, set

K& = {LeKr|ke(L) <a}.

Then Proposition 4.6 from [4] can be reformulated more compactly as
follows:

PRrROPOSITION 2.5. For any ordinal & > 0 and any set I' consisting
only of indecomposable linear order types, the class K is a Serre class
of lattices.

In particular, the theory for the localization of modular lattices de-
veloped in [2] and [3] applies to ['—deviation, and hence Propositions 2.2,
2.4, and 2.5 combine to give the following result.

THEOREM 2.6. Let @« > 0, L € M and T" a nonempty set of inde-
composable linear order types. Denote by Lj* the quotient lattice of L
with respect to the Serre class of lattices K. In case either L has an

&—closure operator or I' contains only countable order types, then

kr(L) <o <= kr(LE) <0.

3. Existence of I'-deviation

In this section, we explore some conjectures made in [4] and [9] about
the existence of ['-deviation. In one of the two cases that we explore,
the localization techniques of the previous section are very useful.

Let 1 denote the order type of the rational numbers. It was shown
[10, Theorem 5] that a poset fails to have w-deviation if and only if it
contains a chain of order type 1; this is due to the density of . More
generally, we consider a set T" of ) linear order types and call a nontrivial
subset § of P I'-dense if z,y € S with © < y implies that there is a
chain C' of type v for some v € ' in § with C C y/z. Conjectures have
been made in [4] and [9] that I'-density is connected to the failure of a
poset to have ['-deviation, and results in [4] and [9] provide evidence of
this.

First, we note a preliminary result that relates I'-density and T'-
deviation. Proposition 3.1 and its proof are completely analogous to [9,
Theorem 1.1] and [4, Lemma 3.22].
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PROPOSITION 3.1. If a poset P contains a I'-dense set, then the T'—
deviation of P fails to exist.

If case P is linearly ordered, the converse of Proposition 3.1 is true [9,
Theorem 1.4]. The converse has been conjectured to hold for modular
lattices [4]. Our next result will provide evidence that the conjecture of
[4] is true.

A lattice L is known to be modular if and only if L contains no
pentagon sublattice. Equivalently, L is modular if and only if either

(1) a,b,c€ L, a < b, and a,b incomparable to ¢ imply a Ac < bAc,
or
(2) a,b,c € L, a < b, and g, b incomparable to c imply aVe <bV e

hold.
We define a lattice to be strongly moduler if both (1) and (2) hold.

In [4], a property denoted by (}) is introduced as a natural extension
of a condition used in [9]. In particular. [4, Lemma 3.23] states that if a
poset P fails to have I'-deviation, then there exists a 4 € I' and a chain
C in P of order type v having the following property:

(1) for any a < b in C, the interval b/a in P does not have I'—deviation.

We use property (1) as a tool in the proofs of Theorems 3.2 and 3.6
below. Qur proof of Theorem 3.2 uses the method of [9, Theorem 1.4].

THEOREM 3.2. Let I' be a set of indecomposable order types, and let
P be a strongly modular lattice. Then P fails to have I'-deviation if
and only if P contains a I'-dense set.

Proof. In view of Proposition 3.1, we only need to prove the “only
if” part. We assume that kr{P) does not exist and construct a I'-dense
subset of C of P. For convenience, we assume throughout the proof that
all intervals considered are intervals of P. Let Cy = (. By [4, Lemma
3.23] P contains a chain C of order type v € I" with property (). We
wish to construct sets C; (0 < i < w)} with the following properties:

(1) For each z,y € | J,.,, Ci with z < ¥, there exists a chain of order
type v € ' in C,, all of whose members lie in the interval y/z.

(2) Uicn Ci has property (f).
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Assume for induction that Cpg, Ch,...,C, have been constructed. In
order to construct Cp 1, we use transfinite induction. Let

S={(a,b)]a<b;abe|JCi},

ian

and let {(@q,ba)| @ < 7} be a well-ordering of S. By [4, Lemma 3.23]
we can find a chain C(ag, by} of type ~ € T such that C(ag, by} C bo/ae
and C'(ag, bg) has property (1)

We wish to modify C(ap, bg) to an isomorphic chain in bg/ag to ensure
that D = (J;<, Ci}U Clag, bo) has property (1). Let z,y € D with
z < y. From our construction, kr(y/z) fails to exist if 2,y € | J;,, Ci or
if z,y € C(ag, bo).

Now suppose that instead, = € |J,.,, Ci and y € C{ag, bp). If there
is a z € D such that z < z < y, then by [4, Proposition 4.6} either z/z
or y/z fails to have T-deviation by our choices of |J;,, Ci or C(ag, bo),
respectively. So we assume that there isno 2 € D withz < z < y. If
there is an element w € C(ag, bp) such that w < y but z is incomparable
to w, then suppose for contradiction that y/x has I'-deviation. Since
w,y € Clag, b}, then y/w does not have I'-deviation, and hence neither
does y/(w A z). By [4, Proposition 4.6] and our assumption that y/z
has I*~deviation, we see that z/{wAx) does not have I'-deviation. Thus
there exists p € P with wAz < p < z; this forces wAz = pAw, which
contradicts the strong modularity of P. Therefore, y/x cannot have
I'-deviation in this case. Thus, the only remaining case to consider is
w € Clag, bp) and z < w imply y < w. But then, if y/2 has I'-deviation,
we may replace ¥ by z in our chain C(aq, bp) without changing the order
type of C(ap, bo).

Similarly, if 2 € C(ag,by) and y € UJ;, Ci, we can replace x by y,
whenever kr(y/z) exists. -

We note that, by [4, Prop.4.6), no two elements of C(ag,bo} are
ever replaced by the same element of |J,., Ci. After this adjustment
of C{ag, bg) to an isomorphic chain in by Jag is completed, D has prop-
erty (1) and C(ag, bp) is still a chain of type + contained in bp/ap.

Assume that for & < 8 < 7, we have defined chains C(aq, by) such
that C(aqs, ba) C ba/aq and

UCi U Uc(aaaba)

ian a<f
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has property (f). By [4, Lemma 3.23] we can find a chain C(ag,bg) of
order type v € T" that C(ag, bg) C ba/an and Clag,bg) has property
(¥). Using the technique of the case 8 = 0, we can adjust C(ag,bs)
to an isomorphic chain in ba/as such that (U<, Ci) U(Ua<s Claa; ba))
has property (1). - -

By transfinite induction, it now follows that Cri1 = |J,er Claa, ba)
satisfies the analogues of (1) and (2).

Let C' =), Ci- Then it follows from (1) that C' is ['-dense.

In [9, Theorem 1.6] it is shown that the converse of Proposition 3.1
holds whenever I" = {} and + does not contain a dense set (i.e., a set of
order type r.) We have the following result for order types that contain
a dense set.

COROLLARY 3.3. Let v be a countable linear order type that contains
a dense set, and let P be a strongly modular lattice. Then P fails to
have y—deviation if and only if P contains a y—dense set.

Proof. Any such < is indecomposable; so the result follows from
Theorem 3.2. d

Next we use the results of Section 2 to extend [9, Theorem 1.6] to
posets that behave like the lattice of modules over a ring.

Recall that an element ¢ of a complete lattice L is said to be com-
pact if whenever ¢ < Vyesy for S C L, there exists a finite subset
{y1,¥2,---,yn} €S such that <y Vya V... Vyy.

Let T be a set of indecomposable linear order types, and let L be a
modular lattice. Then K is a Serre class of lattices by [4, Proposition
4.6]. Let ~r be the congruence relation by on L determined by Kp. In
this situation, we have the following result for a modular lattice L.

PROPOSITION 3.4. The following assertions hold for a lattice L € M
and a set ' of indecomposable linear order types.

(1) No proper interval of L /~r has I'-deviation.
(2) If L is complete and every element of L Is compact, then each
congruence class of ~r has a maximal element.

Proof. (1} Since L is a set, we can find an ordinal « such that

sup{kr(P)|P is a sublattice of L} < a.



952 Toma Albu and Mark L. Teply

For contradiction, suppose that L/~ has a proper interval with I'-
deviation. As in the argument of [9, Theorem 1.1], we can find a proper
interval ¥/T of L/~r with kr(¥/Z) = 0. For any chain C of type y € T
in the interval y/z, the natural mapping of C' to a chain Cin L~y
cannot be one-to-one. Hence C has an interval b/a in some congruence
class of ~r, and thus kp(b/a) < a. Therefore, kr(y/z) < a+ 1. So by
the definition of ~p,Z = ¥, which is a contradiction to our choice of T
and 7.

(2) By [6, p.14], a complete lattice L is Noetherian if and only if
every element of L is compact. The result now follows at once. O

REMARK 3.5. Proposition 3.4 (2) shows that the Serre class Kr is
an example of a localizing class for any Noetherian complete lattice. In
particular, [3, Proposition 2.2| implies that Kp is a localizing class for
a complete lattice I if and only if every congruence class of ~p has a
maximal element; when Kr is a localizing class, then L has a Kp-closure
operator by [3, Corollary 2.3].

We now give our second partial converse to Proposition 3.1.

THEOREM 3.6. Let L be a modular lattice, let T be a set of inde-
composable order types, and assume each congruence class of ~p has
a maximal element. Then L fails to have I'deviation if and only if L
contains a I'-dense set.

Proof. Again, we only need to show the “only if” part; so we assume
that the I'~deviation of L does not exist and construct a I'-dense set in a
manner similar to the proof of Theorem 3.2. Let Cy = §. By [4, Lemma
3.23], there is a chain B; of order type v € T with property ({). Each
element of B is in a different congruence class of ~r. By hypothesis and
[4, Propostion 4.6], we can replace B; by a chain C7 consisting of the
maximal elements of the congruence classes of the elements in By and
still have a chain of type v € T" with property (1). By using the maximal
elements from congruence classes of ~p, we can now proceed inductively
as in the proof of Theorem 3.2 to construct sets Cp(0 < n < w) such
that |J,, ., Cn is a I'—dense set. We note that the construction is, in fact,
easier than in Theorem 3.2, for in this case the interval between any
two points in C will automatically fail to have I'—deviation, as distinct
elements of C' come from distinct congruence classes of ~r. |
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4. Further directions

The following related topics may provide future directions for re-
search.

e When does kr(L) < 0 imply that kpo(L) < 0; ie., for which
sets of order types I' and for which modular lattices L does a so
called ['-Hopkins—Levitzki Theorem hold? As we already noticed,
this can fail by [9, p.261] for any I' consisting of a single initial
ordinal we with £ > 0 an arbitrary ordinal. See [2] and [3] for
other relevant information on this problem.

e When can results found in [2], [3] and/or [9] be extended from
usual Krull dimension and/or from chains to modular lattices with
T'-Krull dimension ?

e Does a modular lattice L fail to have I'-deviation if and if L con-
tains I'-dense set ?
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